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Abstract. The Barut–Girardello (BG) coherent states (CS) representation is extended to the
noncompact algebrasu(p, q) and sp(N,R) in (reducible) quadratic boson realizations. The
sp(N,R) BG CS take the form of multimode ordinary Schrödinger cat states. Macroscopic
superpositions of 2n−1 sp(N,R) CS (2n canonical CS,n = 1, 2, . . .) are pointed out which are
overcomplete in theN -mode Hilbert space and the relation between the canonical CS and the
u(p, q) BG-type CS representations is established.

The sets ofu(p, q) and sp(N,R) BG CS and their discrete superpositions contain many
states studied in quantum optics (even and oddN -mode CS, pair CS) and provide an approach
to quadrature squeezing, alternative to that of intelligent states. New subsets of weakly and
strongly nonclassical states are pointed out and their statistical properties (first- and second-
order squeezing, photon number distributions) are discussed. For specific values of the
angle parameters and small amplitude of the canonical CS components, these states approach
multimode Fock states with one, two or three bosons/photons. It is shown that eigenstates
of a squared non-Hermitian operatorA2 (generalized cat states) can exhibit squeezing of the
quadratures ofA.

1. Introduction

Recently there has been much interest in applications and generalizations of the Barut–
Girardello (BG) coherent states (CS) [1–7]. The BG CS were introduced in [8] as eigenstates
of the lowering Weyl operatorK− of the algebrasu(1, 1). The BG CS representation
has been used for explicit construction of squeezed states (SS) for the generators of the
group SU(1, 1) which minimize the Schr̈odinger uncertainty relation for two observables
[1] and of eigenstates of general elements of the complexified algebrasuC(1, 1) [4, 5]. The
overcomplete families of eigenstates of elements of a Lie algebra were called algebraic CS
[4] and algebra eigenstates [9, 5]. The idea to construct SS for quadratures of any non-
Hermitian operatorA as eigenstates of complex combinationsuA+vA† was put forward in
[1], where such eigenstates|z, u, v〉 were constructed forA = J− andA = K−, J− andK−
being the Weyl lowering operators ofsu(2) andsu(1, 1) Lie algebras correspondingly. The
su(1, 1) BG CS differ from theSU(1, 1) group related CS (see [10] and references therein):
the highest weight vector is the only common state, while thesu(1, 1) algebra related CS
|z, u, v; k〉 of [1] contain the whole set ofSU(1, 1) group related CS with symmetry. The
general set of algebra related CS always contains the corresponding group related CS with
symmetry as a subset.
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Passing to other algebras it is initially important to construct the eigenstates of Weyl
lowering operators, which is a direct extension of the BG definition of thesu(1, 1) CS
to the desired algebra. The aim of this paper is to construct a BG-type CS for the
symplectic algebrasp(N,R) and its subalgebrasu(p, q), p + q = N , in the quadratic
boson representation. Thissp(N,R) representation is of importance in various fields of
physics [11–13]. HereN is the dimension of the Cartan subalgebra, while the dimension
of sp(N,R) is N(2N + 1)/2, N = 1, 2, . . . , [11].

We establish that thesp(N,R) BG CS in quadratic boson representation takes the form
of superpositions of two multimode canonical CS [10]|α〉 and | − α〉 (equation (20)). A
subset of these states is found which is overcomplete in the whole Hilbert spaceH of
the N -mode system. Recall that the correspondingSp(N,R) group related CS are not
overcomplete inH since the representation is reducible. This property is a particular case
of a quite general result of the overcompleteness of the eigenstates of the powersA2n

j of
the non-HermitianAj , j = 1, 2, . . . , provided the eigenstates|z〉, z = (z1, . . . , zN), of all
Aj are overcomplete with respect to a measure independent of the phases ofzj (section 3
and appendix A.2).

Macroscopic superpositions of two canonical CS are called (ordinary) Schrödinger cat
states [14, 15]. The set of thesp(N,R) BG CS includes several subsets of ordinary
cat states, which are extensively studied in quantum optics (see [14, 15] and references
therein). We introducemultimode squared amplitude Schr¨odinger cat statesas macroscopic
superpositions of twosp(N,R) BG CS. Unlike the ordinary cat states these superpositions,
which eventually become combinations of fourN -mode canonical CS, can exhibit amplitude
and squared amplitude quadrature squeezing (first- and second-order quadrature squeezing or
linear and quadratic squeezing) [17], and other nonclassical properties. Families of weakly
and strongly nonclassical [18] cat states are pointed out as macroscopic superpositions of
two sp(N,R) CS. There are states in these families that tend to multimode Fock states with
0, 1, 2 or 3 photons as the amplitude of their canonical CS components approaches zero.
We note that, unlike the case of Robertson (Schrödinger) intelligent states (IS) [1, 6], the
cat state squeezing cannot be arbitrarily strong.

Recently [7] the BG-type CS have been constructed for theu(N−1, 1) algebra. Here we
construct overcomplete families of states foru(p, q), p+q = N , and the related resolution
unity measures as well. We show that the ‘pair CS’ [16] are in fact theu(1, 1) BG CS
|z; k〉 for k = 1

2, 1 . . . , while the ‘two-mode Schrödinger cat states’ of [20] are a particular
case of ouru(p, q) multimode squared amplitude cat states (48).

This paper is organized as follows. In section 2 a concise review of the properties of BG
CS representation and its relations to the canonical one- and two-mode CS representation
(or Fock–Bargman representation) [10] is given. An explicit relation between the two-
mode canonical CS and the BG CS representations is obtained. Using this relation
one can easily establish the coincidence between the generalized intelligent states (IS)
|z, u, v; k〉 [1] and many other one- and two-mode states, constructed by other authors
as eigenstates ofua2 + va†2 or uab + va†b† [21–23]. For example, for realu, v the states
|z, u, v; k = 1

2〉 coincide with the ‘pair excitation–de-excitation CS’ [21], while for realu, v

andk = (1+ |q|)/2 they are identical to the ‘two-mode intelligentSU(1, 1) CS’ [22].
In section 3 the BG CS are extended explicitly to the algebrasp(N,R) in the (reducible)

quadratic boson representation and overcomplete in wholeH families of such states are
constructed. Overcomplete families of eigenstates of the power 2n of Weyl operatorsaiaj
are also built up. These states take the form of macroscopic superpositions with 2n canonical
CS components. Theu(p, q) BG-type CS are considered in section 4 (overcompleteness,
resolution unity measure, particular cases and relation of their analytic representation to that
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of canonical CS). In section 5 the statistical properties (weak and strong nonclassicality,
amplitude and squared amplitude quadrature squeezing, sub- and super-Poissonian photon
statistics) of the constructedsp(N,R) algebra related CS and their superpositions are
discussed and illustrated by several graphics. Our analysis shows that photon number
oscillations are not necessary characteristics of the nonclassicality of quantum states (neither
are they sufficient [24]). We note the main difference between squeezing in intelligent SS
[1, 6, 25] and in cat type SS and construct a second kind multimode squeeze operator as a
map from CS|α〉 to a set of cat-type multimode SS. In the appendix several statements of
the main text are proved.

2. The Barut–Girardello coherent states

The property of canonical CS|α〉 [10] to be eigenstates of the photon number lowering
operatora, a|α〉 = α|α〉 (α is a complex number, [a, a†] = 1) was extended by BG [8]
to the case of the Weyl lowering operatorK− of su(1, 1) algebra. Here we briefly review
some of their properties. The defining equation is

K−|z; k〉 = z|z; k〉 (1)

where z is the (complex) eigenvalue andk is the Bargman index. Here, and in [1], we
introducedk = −8 as a second label of the state and replaced the BGz with z/

√
2. For

the discrete seriesD(±)(k) the parameterk takes the values± 1
2,±1, . . . . The Cartan–Weyl

basis operatorsK± = K1± iK2,K3 of su(1, 1) obey the relations

[K3,K±] = ±K± [K−,K+] = 2K3 (2)

with the Casimir operatorC2 = K3
2 − ( 1

2)[K−K+ + K+K−] = k(k − 1). The expansion
of these states over the orthonormal basis of eigenstates|k + n, k〉 of K3 (K3|n + k, k〉 =
(n+ k)|n+ k, k〉, n = 0, 1, 2, . . .) is

|z; k〉 = NBG(|z|, k)
∞∑
n=0

zn√
n!0(2k + n) |n+ k, k〉 ≡ NBG(|z|, k)||z; k〉

NBG(|z|, k) = [0(2k)/0F1(2k; |z|2)] 1
2 = |z|k−1/2

√
I2k−1(2|z|)

(3)

where 0F1(c; z) is the confluent hypergeometric function,Iν(z) is the modified Bessel
function of the first kind, and0(z) is the gamma function [26]. The above BG states
|z; k〉 are normalized to unity. Their scalar product is

〈k; z|z′; k〉 = 0F1(2k; z∗z′)[0F1(2k; |z|2)0F1(2k; |z′|2)]− 1
2 (4)

and they resolve the unity (the identity operator),∫
dµ (z, k)‖z; k〉〈k; z‖ = 1k dµ (z, k) = 2

π
|z|2k−1K2k−1(2|z|) d2z (5)

whereKν(x) is the modified Bessel function of the third kind. Note that||z; k〉 = N−1
BG|z; k〉,

while in [8] these non-normalized CS were denoted as0(2k)−1/2|z〉 (note also the misprint
in [8]: in the formula for the measure functionσ(r) one should replaceK8+ 1

2
(2
√

2r) with

K28+1(2
√

2r) [2]). Owing to the above overcompleteness property any state|9〉 can be
correctly represented by the analytic function

FBG(z, k;9) = 〈k, z∗|9〉/NBG(|z|, k) = 〈k, z∗||9〉 (6)
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which is of the growth(1, 1). The orthonormalized states|k + n, k〉 are represented by
monomialszn/

√
n!0(2k + n) (we note a misprint in these monomials in [4, 6]:k should

be replaced by 2k). The operatorsK± andK3 act in the spaceHk of analytic functions
FBG(z, k) as linear differential operators

K+ = z K− = 2k
d

dz
+ z d2

dz2
K3 = k + z d

dz
. (7)

This analytic representation has been used to explicitly construct eigenstates|z, u, v; k〉 of
complex combinationsuK− + vK+ in paper [1].

BG have established their continuous representation for the discrete seriesD±(k),
k = ± 1

2,±1, . . . . However, by inspection of their construction one can easily see that it also
holds forreducible representationsand for 1

2 > |k| > 0—one only has to keep in mind that
the quantity 1k in the overcompleteness relation (5) is the identity operator in the subspace
Hk, wheresu(1, 1) acts irreducibly. The proof consists of two observations (for concreteness
we takeD+(k)): (a) the expansions (3) are convergent and represent normalized states for
k > 0, provided|k, k + n〉 are orthonormalized; (b) the BG measure dµ(z, k) resolves the
unity operators by means of|z; k〉 for k > 0 provided the orthonormalized set of|k, k + n〉
is complete.

It is well known that thesu(1, 1) algebra has one- and two-mode quadratic boson
representations, which are reducible in the spaces of states of one- and two-mode systems
correspondingly. The one-mode realization ofsu(1, 1) is

K− = 1
2a

2,K2 = 1
2a
†2,K3 = 1

4(2a
†a + 1). (8)

Its quadratic Casimir operatorC2 equals− 3
16, C2 = K2

3−K2
1−K2

2 = k(k−1), the Bargman
index beingk = 1

4,
3
4. The two-mode representation

K− = a1a2 K+ = a†1a†2 K3 = 1
2(a
†
1a1+ a†2a2+ 1) (9)

is highly reducible (completely reducible), its irreducible components being just the
representations from the discrete seriesD+(k), k = 1

2, 1, . . . . The whole spaceH of the
two-mode system states is a direct sum of the irreducible modulesHk. In these realizations
the operatorsuK−+vK+, which were diagonalized in [1], readua2+va†2 andua1a2+va†1a†2.

The Heisenberg–Weyl algebrash1 and h2, spanned by 1, a1, a
†
1 and 1, a1, a

†
1, a2, a

†
2

correspondingly, act irreducibly in the state spaces of one- and two-mode systems. The
related families of CS|α〉 and |α1, α2〉 are overcomplete and realize the continuous
representations, which proved to be very efficient [10]. Therefore it is important to establish
the relation between BG CS and the canonical CS representations. In the canonical CS
representation every state|9〉 is represented by an entire analytic functionFCCS(α1, α2;9)
of growth (1

2, 2),

FCCS(α1, α2;9) = exp( 1
2(|α1|2+ |α2|2))〈α∗1, α∗2|9〉. (10)

In the one-mode caseFCCS(α) = exp( 1
2|α|2)〈α∗|9〉. The eigenvalue properties of the

BG CS and canonical CS and the realizations (8) and (9) suggest that the canonical CS
representation of a state|9〉 ∈ Hk should be obtained (up to a common factor) from its BG
representation by means of substitutionz = α2/2 for the one-mode system andz = α1α2

for the two-mode system, and this is the case. The corresponding relation between the two
representations of the one-mode system states was written down in [2],

FCCS(α;9) = π 1
4

[
FBG

(
1

2
α2, k = 1

4

)
+ 1√

2
αFBG

(
1

2
α2, k = 3

4

)]
. (11)
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If |9〉 is an even (odd) state, then the second (first) term is vanishing. For the two-mode
system states the relation betweenFCCS andFBG, defined above, is found in the form (of
proof in appendix A.1)

FCCS(α1, α2;9) = FBG(z, k = 1
2;9)+

∑
k>1

(α2k−1
1 + α2k−1

2 )FBG(z, k;9) z = α1α2.

(12)

Using these relations one can establish the coincidence between states, obtained in BG
analytic representations and other familiar states. For example, the known one-mode
even/odd CS|α〉± coincide with the BG CS|z; 1

4〉 and |z; 3
4〉 [2, 27], while the generalized

IS |z, u, v; k〉, constructed in [1] using BG representation, fork = 1
4,

3
4 are the same as

the eigenstates ofua2 + va†2, constructed for realu, v in [25] and for complexu, v in
[30, 4, 31, 9] using the canonical CS representation. Fork > 1

2 the |z, u, v; k〉 with real
u, v can be identified with two-modeSU(1, 1) states of [16, 21, 22]. AllSU(1, 1) states of
[32, 33] can be found in the general family ofsuC(1, 1) algebra related CS|z, u, v,w; k〉
constructed in [4, 6, 5].

In conclusion to this section it is worth noting that theSU(1, 1) group related CS [10]
provides another analytic (in the unit disk) [28] representation of Hilbert space which has
been shown [2] to be related to the BG representation through a Laplace transform. It
is also worth making a note concerning the notation: the BG CS are eigenstates of the
lowering operatorK− = K1 − iK2, which belongs to the complexified algebrasuC(1, 1).
Therefore we could denote such states assuC(1, 1) algebra related CS. However, usually
when one deals with such simple complex combination as Weyl lowering/raising operators
of an algebraL (K± for su(1, 1)) one writesL instead ofLC (su(1, 1) instead ofsuC(1, 1)).
For brevity we follow this convention for BG CS for Lie algebras. Continuous families
of eigenstates of general elements ofsuC(1, 1) have been considered and calledsuC(1, 1)
algebraic CS [4] orSU(1, 1) algebra eigenstates [5]. Another motivation of the new term
‘algebra related CS’ is the following property of the BG CS|z; k〉: unlike thehCn algebra
CS this family cannot be represented in the form of group related CS either for the group
SU(1, 1) or for the group of automorphysm Aut(suC(1, 1)) 3 SU(1, 1) [29].

3. The BG CS for sp(N ,R)

The BG CS for semisimple Lie algebras can be naturally defined as eigenstates of mutually
commuting Weyl lowering (or raising) operatorsEα′ (E†α′ ) [11]):

Eα′ |z〉 = zα′ |z〉. (13)

This definition can be extended to any algebra, where lowering/raising operators exist.
We shall consider here the simple Lie algebrasp(N,R) (the symplectic algebra of rank
N and dimensionN(2N + 1)). We redenote the Cartan–Weyl basis asEij , E

†
ij , Hij

(i, j = 1, 2, . . . , N , Eij = Eji , H †ij = Hji), and write thesp(N,R) commutation relations

[Eij , Ekl ] = [E†ij , E
†
kl ] = 0

[Eij , E
†
kl ] = δjkHil + δilHjk + δikHjl + δjlHik

[Eij ,Hkl ] = δilEjk + δjlEik
[E†ij , Hkl ] = −δikE†j l − δjkE†il
[Hij ,Hkl ] = δilHkj − δjkHil .

(14)



5678 D A Trifonov

The BG CS|{zkl}〉 for sp(N,R) are defined as eigenstates ofEij ,

Eij |{zkl}〉 = zij |{zkl}〉 i, j = 1, 2, . . . , N. (15)

Let us note that the Cartan subalgebra is spanned byHii only andHi,j 6=i are also Weyl
lowering and raising operators as allEij are; we have simply separated themutually
commuting lowering operatorsEij . We shall construct explicitly thesp(N,R) BG CS
for the quadratic boson representation, which is realized by means of the operators

Eij = aiaj E
†
ij = a†i a†j Hij = 1

2(a
†
j ai + aia†j ) (16)

whereai, a
†
i areN pairs of boson annihilation and creation operators. These operators act

irreducibly in the subspacesH± spanned by the number states|n1, . . . , nN 〉 with even/odd
ntot ≡ n1 + n2 + · · · + nN . The whole spaceH of theN -mode system is a direct sum of
H±.

The sp(N,C) is the complexification ofsp(N,R) and therefore the Hermitian
quadratures of the above operators span overC the sp(N,C) algebra. In the case of
N = 1 one obtains from (16) the three operatorsK±,3 which closesp(1, R) ∼ su(1, 1) (see
equation (8)). We see that eigenstates ofa2 (the known even/odd states|α〉± in quantum
optics [14]) aresp(1, R) BG CS fork = 1

4,
3
4.

One general property ofsp(N,R) CS |{zkl}〉 for the representation (16) is that they
depend effectively onN complex parametersαj (not of N2 + N as one might expect).
Indeed, using the boson commutation relations [ai, aj ] = 0 and the definition (15) we can
easily derive

zij zkl = zikzjl = zilzjk (17)

wherefrom we find the factorization of the eigenvalueszij ,

zij = αiαj αi, αj ∈ C. (18)

Therefore in the above boson representation the definition (15) is rewritten as

aiaj |{αkαl}〉 = αiαj |{αkαl}〉, i, j = 1, 2, . . . , N. (19)

The general solution to this system of equations is most easily obtained in the canonical
CS representation [10]. In Dirac notations the solution reads

|{αkαl};C+, C−〉 = C+(α)|α〉 + C−(α)| −α〉 ≡ |α;C+, C−〉 (20)

where |α〉 are multimode canonical CS,α = (α1, α2, . . . , αN) and C±(α) are arbitrary
functions, subjected to the normalization condition (|α|2 = α ·α = |α1|2+ · · · + |αN |2)

|C+(α)|2+ |C−(α)|2+ 2Re(C−C
†
+)N(|α|) = 1 N(|α|) = 〈±α| ∓α〉 = e−2|α|2.

(21)

Thus the families of states|α;C+, C−〉 representthe whole set ofsp(N,R) BG CS for
the representation (16). They have the form of macroscopic superpositions of multimode
canonical CS. The macroscopic superpositions of two canonical CS are also called
Schr̈odinger cat states [14, 15], which we shall refer to as ordinary Schrödinger cat states.
The set of (20) is the most general family of superpositions of the multimode CS|α〉 and
| −α〉.

The large family ofsp(N,R) CS (20) contains many known, in quantum optics, subsets
of states [14, 15] and many others not yet studied. Let us point out some of the well
known particular subsets of (20). The limiting cases ofC− = 0 or C+ = 0 recover the
overcomplete family of multimode canonical CS, andC− = ±C+ produces the ordinary
multimode even/odd CS [15].
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For the one-mode system (N = 1) several cases of the superpositions of two canonical
CS (20) are thoroughly studied (for example, see [14] forN = 1 and [15] for anyN ).
Nevertheless, as far as we know, even in the one-dimensional case no family of Schrödinger
cat states was pointed out which is overcomplete in the strong sense in wholeH. Here we
provide such families for anyN .

Consider in (20) the choice of

C+ = cosϕ C− = i sinϕ (22)

which clearly satisfy the normcondition (21) for any angleϕ,

|α;ϕ〉 = cosϕ|α〉 + i sinϕ| −α〉. (23)

In the Fock basis (number states|n1, . . . , nN 〉) we have the expansion

|α;ϕ〉 = e−|α|
2/2

∞∑
ni=0

α
n1
1 . . . α

nN
N eiϕ(−1)n1+···+nN

√
n1! . . . nN !

|n1, . . . , nN 〉. (24)

Using direct calculations we find that these states resolve the unity operator for anyϕ and
thereby provide an analytic representation in the wholeH,

1= 1

πN

∫
d2α |α;ϕ〉〈ϕ;α| d2α = dReα1 dImα1 . . .dReαN dImαN. (25)

States|9〉 are represented by functions

f9(α, ϕ) = e|α|
2/2〈ϕ,α∗|9〉

on which the operatorsaj anda†j act as

aj = Pϕαj a
†
j = Pϕ

∂

∂αj
(26)

wherePϕ acts as an inversion operator with respect toϕ: Pϕf (ϕ) = f (−ϕ). At ϕ = 0, π
the multimode canonical CS representationaj = αj , a†j = ∂/∂αj is recovered.

The notation of (15) enables us to construct eigenstates of squared Weyl operatorsE2
ij

(in any representation) as macroscopic superpositions ofsp(N,R) BG CS in the form (zij
are eigenvalues ofEij )

|{zkl};D+,D−〉 = D+({zij })|{zkl}〉 +D−({zij })|{−zkl}〉 (27)

where the functionsD±({zij }) have to be subjected to the normalization condition (supposing
〈{zkl}|{zkl}〉 = 1)

|D+|2+ |D−|2+D−D∗+〈{zkl}|{−zkl}〉 +D∗−D+〈{−zkl}|{zkl}〉 = 1. (28)

In the quadratic boson representation (16) these states take the form

|{αkαl};D+,D−〉 = D+|{αiαj };C+, C−〉 +D−|{−αiαj };C+, C−〉
≡ |α;C+, C−,D+,D−〉 (29)

and can be termedmultimode squared amplitude Schr¨odinger cat states. They are expected
to exhibit linear and quadratic squeezing and other nonclassical properties. In view of
(20) the states (29) are eventually expressed in terms of superpositions of four multimode
canonical CS.

In conclusion to this section we note that the overcomplete family of states|α;ϕ〉 admits
n angles generalization: by means ofn anglesϕk, k = 1, 2, . . . , n, n being a positive integer,
one can construct macroscopic superpositions of 2n CS |α〉 (or, equivalently, superpositions



5680 D A Trifonov

of 2n−1 sp(N,R CS of the type|α;ϕ〉), which are overcomplete and resolve the unity with
respect to the same measureπ−N d2α,

|α;ϕ1, . . . , ϕn〉 = cosϕn|α;ϕ1, . . . , ϕn−1〉 + i sinϕn| −α;ϕ1, . . . , ϕn−1〉 (30)

1= 1

πN

∫
d2α |α;ϕ1, . . . , ϕn〉〈ϕn, . . . , ϕ1;α|. (31)

In every component state in|α;ϕ1, . . . , ϕn〉 the parametersαi are on a circle with radius
|αi |. For n = 0 we have CS|α〉, for n = 1 the states (23) are reproduced.|α;ϕ1, . . . , ϕn〉
are easily seen to be eigenvectors of(aiaj )

2n−1
, and not of(aiaj )m, m < 2n−1, unlessϕk

are integer multiples ofπ/2. In the one mode case (N = 1) |α;ϕ1, . . . , ϕn〉 are eigenstates
of a2n . Eigenstates ofa2k for k = 1, 2, . . . , can be easily constructed as superpositions
of sp(1, R) CS. Here we proved their overcompleteness for 2k = 2n = 2, 4, 8, 32. . . .
Some eigenstates of powers ofak, k > 2, have been considered in [34]. Multicomponent
macroscopic superpositions of canonical CS (one mode only so far) are intensively studied
in quantum optics (with the final aim being the production of Fock states) [35–37].

The above result (31) is a particular case of a general theorem, proved in appendix A.2,
concerning the overcompleteness of common eigenstates of powers ofN non-Hermitian
operatorsA2n

j , j = 1, . . . , N , n = 1, 2, . . . , and valid for the case ofN -mode canonical CS
and also forsp(N,R) BG CS.

4. BG CS for the algebrau(p, q)

The algebrasu(p, q), p + q = N , are real forms ofsl(N,C) and they are subalgebras of
sp(N,R) [11]. Therefore the BG CS foru(p, q) should be obtained fromsp(N,R) CS
by a suitable restriction. In this section we consider these problems in greater detail in the
boson representation (16).

The following subset of operators of (16) close theu(p, q) algebra (oruC(p, q) if one
considers non-Hermitian linear combinations of the operators below) [11],

Eαµ = aαaµ E†αµ = a†αa†µ Hαβ = 1
2(a
†
αaβ + aβa†α) Hµν = 1

2(a
†
µaν + aνa†µ)

(32)

where we adopted the notationsα, β, γ = 1, . . . , p, µ, ν = p + 1, . . . , p + q, p + q = N
(while i, j, k, l = 1, 2, . . . , N). For p = 1 = q the three standardsu(1, 1) operators
K±,K3 areK− = E12 = a1a2,K+ = E†12 = a†1a†2,K3 = (a†1a1 + a†2a2 + 1)/2. The subsets
of Hermitian operators

M
(p)

αβ = 1
2(Hαβ +Hβα − δαβ) M̃

(p)

αβ = i(Hβα −Hαβ)
M(q)
µν = 1

2(Hµν +Hνµ − δµν) M̃(q)
µν = i(Hνµ −Hµν)

(33)

realize representations of compact subalgebrasu(p) andu(q) correspondingly. Theu(p, q)
algebra (32) acts irreducibly in the subspaces of eigenstates of the Hermitian operatorL,

L =
∑
α

M(p)
αα −

∑
µ

M(q)
µµ =

∑
α

Hαα −
∑
µ

Hµµ − (p − q)/2. (34)

This is the linear-in-generators Casimir operator and the higher Casimirs here are
expressed in terms ofL [13]. Denoting the eigenvalue ofL by l we have the expansion
H = ∑∞

l=−∞ ⊕Hl . The representations corresponding to±l are equivalent (but the
subspacesH±l are orthogonal). We note thatL =∑α a

†
αaα−

∑
µ a
†
µaµ, andl = 0,±1, . . . .

The commuting Weyl lowering operators ofu(p, q) areEµγ = aµaγ , γ = 1, 2, . . . , p,
µ = p + 1, p + 2, . . . , p + q = N . We have proved in the above that eigenvalues of the
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product of two boson destruction operators are factorized. Therefore theu(p, q) BG CS in
the above boson representation can be defined as|{αβαν}; l, p, q〉,

aµaγ |{αβαν}; l, p, q〉 = αµαγ |{αβαν}; l, p, q〉
γ = 1, . . . , p µ = p + 1, . . . , p + q (35)

whereαµ andαγ are arbitrary complex numbers. We put‖α; l, p, q〉 = ‖{αβαν}; l, p, q〉,
denoting by‖9〉 a non-normalized (but normalizable) state, while|9〉 is normalized to
unity. Solutions to the above equations can be written in the form

‖α; l, p, q〉 =
∑

ñp−ñq=l

α
n1
1 . . . α

nN−1

N−1α
ñp−ñ′q−l
N√

n1! . . . nN−1!(ñp − ñ′q − l)!
|n1, . . . , nN−1; ñp − ñ′q − l〉 (36)

whereαi , i = 1, . . . , N , are arbitrary complex parameters,ñp =
∑

α nα, ñq =
∑

µ nµ,
ñ′q = ñq − nN and l = ñp − ñq . In (36) summation is over allni = 0, 1, 2, . . . provided
ñp − ñq = l = constant.

If we multiply ‖α; l, p, q〉 by exp(−|α|2/2) and sum overl we evidently obtain the
normalized multimode CS|α〉 (for any pairp, q),

|α〉 = e−
1
2 |α|2

∞∑
l=−∞

‖α; l, p, q〉. (37)

The last equality suggests that the states‖α; l, p, q〉 form overcomplete families inHl for
every p, q. This is the case: using the overcompleteness of|α〉, formula (37) and the
orthogonality relations

〈p, q, l′;α‖α; l, p, q〉 = 0 for l′ 6= l (38)

one obtains the resolution of unity inHl in terms of theu(p, q) CS ‖α; l, p, q〉,∫
dµ (α)‖α; l, p, q〉〈p, q, l;α‖ = 1l dµ (α) = 1

πN
e−|α|

2
d2α. (39)

Now we note that inu(p, q) CS (36) one complex parameter, sayαN , can be absorbed
into the normalization factor by redefining the rest as

z1 = α1αN, . . . , zp = αpαN zp+1 = αp+1/αN, . . . , zN−1 = αN−1/αN . (40)

Then we can write‖α; l, p, q〉 = α−lN ‖z; l, p, q〉 and

‖z; l, p, q〉 =
∑

ñp−ñq=l

z
n1
1 . . . z

N−1
N−1√

n1! . . . nN−1!(ñp − ñ′q − l)!
|n1, . . . , nN−1; ñp − ñ′q − l〉 (41)

wherez = (z1, . . . , zN−1). The states‖z; l, p, q〉 are normalizable in view of

1= 〈α|α〉 = e−|α|
2
∞∑

l=−∞
|αN |−2l〈q, p, l; z‖z; l, p, q〉

which stems from (37) and (38). The normalized states|z; l, p, q〉 are |z; l, p, q〉 =
N‖z; l, p, q〉, N being the normalization constant.

The family {‖z; l, p, q〉} is overcomplete inHl and the resolution of unity reads
(d2z =∏N−1

i dRezi dImzi = |αN |2(q−1−p)∏N−1
i dReαidIm αi)

1l =
∫

dµ (z; l, p, q)‖z; l, p, q〉〈q, p, l; z‖
dµ(z, l, p, q) = F(|z̃p|, |z̃q |; l, p, q)d2z

(42)
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where |z̃p|2 = |z1|2 + · · · + |zp|2, |z̃q |2 = |zp+1|2 + · · · + |zN−1|2, the measure weight
function being

F(|z̃p|, |z̃q |; l, p, q) = 1

πN

∫
d2αN |αN |2(q−1−p−l)

× exp

[
−
( |z̃p|2
|αN |2 + |z̃q |

2|αN |2+ |αN |2
)]
. (43)

One can prove that the above measure is unique in the class of smooth functions of
|z1|, . . . , |zN−1| (see appendix A.3). Thus the explicit form ofu(p, q) BG CS is

|z; l, p, q〉 = N (|z1|, . . . , |zN−1|; l, p, q)‖z; l, p, q〉 (44)

where‖z; l, p, q〉 take the form of superposition (41) of multimode Fock states with fixed
value l of the difference number operatorL, equation (34).

Let us note some known particular cases of theu(p, q) BG CS (41). Recently the case
of q = 1 and negativel, −l > 0 (thenp = N − 1, ñ′q = 0, zq = 0 andzp ≡ z) has been
considered by Fujii and Funahashi [7]. Their resolution unity measure (inHl) reads

dµ′(z) = F ′(|z|, l, p,1)d2z F ′ = 2|z|−l−p+1

πp
K−l−p+1(2|z|) (45)

whereKν(z) is the modified Bessel function of the third kind [26].F ′(|z|, l, p,1) and
F(|z|, l, p,1) do not depend on phases ofzi and are smooth functions of|z1|, . . . , |zp|,
i.e. all order derivatives are finite. In appendix A.3 we prove that the resolution unity
measures foru(p, q) CS are unique within such a class of functions, i.e.F ′(|z|, l, p,1)
andF(|z|, l, p,1) should coincide. Then using the analyticity property of Bessel functions
Kν(z) [26] we establish (cf proof in appendix A.4) the following integral representation for
Kν(z) with ν = 0,±1, . . . and Rez > 0

Kν(2z) = 1
2z
−ν
∫ ∞

0
dx xν−1e−(x+z

2/x). (46)

For p = 1, q = 1 our states|z; l, p, q〉 recover (as the states of [7] do) the BG CS
|z; k〉 for the seriesD+(k) of su(1, 1) [8], the Bargman indexk being expressed in
terms of l as k = (1 + |l|)/2. The irreps with±l are equivalent, however, the states
|z; l, 1, 1〉 and|z;−l, 1, 1〉 are different as one can see from their definition (41) (moreover,
they are orthogonal). Thus our states|z;±l, 1, 1〉 represent two equivalent but different
realizations of BG CS|z; k〉 for k = (1+ |l|)/2 = 1

2, 1, . . . . The exact identification is
‖z; l 6 0, 1, 1〉 = ‖z; k〉, ‖z; l > 0, 1, 1〉 = z2k−1‖z; k〉.

The pair of CS in quantum optics|ζ, q〉 [16] (defined as eigenstates ofa1a2 with
a
†
1a1−a†2a2 = q = constant) appear asu(1, 1) BG CS|z; k〉 in the two-mode representation

(N = 2 in (32)). The identifications are|ζ, q〉 = |z; l, 1, 1〉, i.e. the Agarwalζ andq are
equal to ourz and l correspondingly. In view of equations (42)–(45) the pair of CS are
overcomplete in the subspacesHl . Our |z; l, p, q〉 can be regarded as a generalization of
|ζ, q〉 to theN -mode boson system:|z; l, p, q〉 are invariant under the annihilation of pairs
of two different mode bosons, one from the firstp modes, and the other from the lastq
modes. Note that in thesp(N,R) CS |α, C−, C+〉 there is no such restriction—these are
the most general states, which are invariant under the annihilation of any pair of bosons.

The sp(N,R) CS |α, C−, C+〉 can be decomposed in terms ofu(p, q) CS |z; l, p, q〉
with different l. ForN = 2 this decomposition reads

|α;C−, C+〉 =
∞∑
l=0

αl1C̃l|z;−l, 1, 1〉 +
∞∑
l=1

αl2C̃l|z; l, 1, 1〉

C̃l = C+ + (−1)lC− z = α1α2.

(47)
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In analogy with the case ofsp(N,R), considered in section 3 we introduce theu(p, q)
multimode squared amplitude cat states|z; l, p, q;D+,D−〉 as macroscopic superpositions
of u(p, q) BG-type CS|z; l, p, q〉,

|z; l, p, q;D+,D−〉 = D+|z; l, p, q〉 +D−| − z; l, p, q〉 (48)

which are expected to exhibit squared amplitude squeezing and other nonclassical properties.
In the particular cases ofN = 2, D− = D+ exp(iφ) the states (48) recover the two-mode
Schr̈odinger cat states, considered recently in [20].

5. Statistical properties of theN -mode sp(N ,R) BG CS and their macroscopic
superpositions

In this section we consider some general statistical properties of the constructedsp(N,R)

algebra related CS and their superpositions and discuss in greater detail some new subsets
of this large family.

All sp(N,R) BG-type CS minimize the Robertson multidimensional uncertainty relation
[38] for the Hermitian quadraturesXij , Yij of mutually commuting Weyl lowering operators
Eij , since they are eigenstates of allEij (proposition 3 of [6]),

detσ({Xij , Yij };α, C−, C+) = detC({Xij , Yij };α, C−, C+) (49)

whereσ is the matrix of second moments of all of the observablesXij , Yij (the uncertainty
matrix) andC is the antisymmetric matrix of all mean commutators ofXij , Yij times
(−i/2). The number of commutingEij is equal to(N2 + N)/2. Robertson inequality
for n observablesXj , j = 1, 2, . . . , n, reads

detσ({Xj };9) > detC({Xj };9) (50)

and for a pair of operatorsX, Y it reduces to the Schrödinger case,12X12Y − σ 2
XY >

|〈[X, Y ]〉|2/4, whereσXX = 〈XY + YX〉/2− 〈X〉〈Y 〉 (for greater detail see for example,
[1, 6]). In all sp(N,R) BG CS the covariances ofXij andYij are vanishing, but those of
Xij andXkl are not, i.e. the matrixσ({Xij , Yij };α, C−, C+) is not diagonal.

The subset of Schrödinger cats|α, ϕ〉, equation (23), possess several remarkable
properties:

(a) they are overcomplete in the whole Hilbert space (see equation (25));
(b) the photon statistics in every mode is Poissonian for anyα and ϕ. This

follows immediately from the expansion (24) in terms of multimode number states|n〉 =
|n1, . . . , nN 〉;

(c) the states|α;ϕ〉 can exhibit squeezing in the quadraturespj , qj (for example, for
|α| close/equal to|αi | = 0.5, φ = π/4 and argαi aroundnπ/2, n = 0, 1, . . . , the minimal
value of1pi and1qi being equal to 0.316—see the graphicsf1 on figure 1);

(d) these states are physically coherent (‘true coherent’) since they satisfy the condition
of full second-order coherence of the field [39]. The latter property again follows from
equation (24), which is of the form of generalized CS of Glauber and Titulaer [39].

This interesting subfamily{|α;ϕ〉} of sp(N,R) BG CS can be generated from the
familiar multimode canonical CS by means of the following operator

S(ϕ) = exp(i(−1)n̂ϕ) |α, ϕ〉 = S(ϕ)|α〉 (51)

wheren̂ = a†1a1+· · ·+ a†NaN is the total number operator. As strange as it may seemS(ϕ)

is well defined for any angleϕ and is unitary. On any state|9〉 its action is

S(ϕ)|9〉 = eiϕ‖9〉e + e−iϕ‖9〉o (52)
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Figure 1. Amplitude quadrature squeezing in thesp(N,R) BG CS|α;ϕ〉 and the superpositions
|α, φ, ψ〉, equation (61), forri = |αi | = 0.05. 1q̃i = 1q̃i(r̃, ri , θi , φ, ψ), r̃ = |α|, q̃i = qi
or pi . f1 = 12qi(ri , ri ,− π2 , ϕ), f2 = 12pi(ri , ri ,

π
4 , 0, ψ), f3 = 12qi(ri , ri ,

π
4 , 0, ψ),

f4 = 12pi(4ri , ri , π4 , 0, ψ). |α, ϕ〉 are weakly nonclassical states for every mode,|α, φ, ψ〉
are strongly nonclassical.

where‖9〉e,o are the projections of|9〉 on even/odd subspacesH±. The operator(−1)n̂ is
Hermitian and(−1)n̂ϕ may be regarded as a sort of nonlinear multimode interaction.

In the classification scheme of [18] the (one-mode) states which possess the above
properties (b) and (c) fall into the subclass of theweakly nonclassicalstates. In this scheme
the nonclassical states are subdivided intoweakly nonclassicaland strongly nonclassical
depending on the pointwise non-negativity or nonpositivity of the phase averagedP(I )
Glauber–Sudarshan diagonal representationP(β), I = |β|2, β = √I exp(iϑ),

P(I ) = 1

2π

∫ 2π

0
P(reiϑ) d2ϑ r =

√
I = |β|. (53)

If P(I ) < 0 for some values ofI the state is strongly nonclassical (then alsoP(β) < 0
for some values ofβ) and if P(I ) > 0 but P(β) � 0 the state is said to be weakly
nonclassical [18]. The set of classical states (i.e.P(β) > 0) is not subdivided. Criteria for
phase-insensitive nonclassicality of single-mode states were also studied in [19].

The family of sp(N,R) BG CS |α;ϕ〉, equation (23), consists of classical (atϕ =
0,±π/2, π ) and weakly nonclassical states (forϕ 6= 0,±π, π ) for every mode since the
multimode photon distribution in these states is a product of one-mode Poisson distributions.
There are no strongly nonclassical states in this family. Note that atϕ = 0,±π/2, π
the states|α;ϕ〉 are the CS|α〉 or | − α〉, and at ϕ = π/4 they coincide with the
Yurke–Stoler states [14]. The states with Gaussian Wigner function are either classical
or strongly nonclassical [18] and strongly nonclassical states from the latter family all have
a positive MandelQ factor (super-Poissonian statistics) [40, 41] [Q = (12n̂ − 〈n̂〉)/〈n̂〉,
wheren̂ = a†a].

Along these lines we note that in the family of weakly nonclassical states|α;ϕ〉 there
are states which exhibit quadrature squeezing (graphicsf1 on figure 1). Conversely, there
exist strongly nonclassical states (for example, in the family|α, φ,ψ〉, defined below) which
do not exhibit squeezing of the quadratures of eithera or a2 (nor is theQ factor negative).
Moreover, among the one-mode|α, φ,ψ〉 there are states withQ = 0 which are squeezed
or not squeezed, but their photon statistics are not Poissonian (see the graphics on figures 4
and 5). These examples show thatQ = 0 is not a sufficient condition either for statistics
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to be Poissonian or for a state to be classical.
The quadrature squeezing and/orQ < 0 are sufficient conditions for the nonclassicality

of the corresponding states [41]. However, they are neither sufficient nor necessary for the
strong nonclassicality as demonstrated below.

In [18] a simple sufficient condition for strong nonclassicality of the states (i.e. for
nonpositivity of the phase smeared diagonalP representationP(I )) is given in terms of
photon number distributionspn,

ln := (n+ 1)pn−1pn+1− np2
n < 0 for somen > 0. (54)

The distributionpn is expressed in terms ofP(I ) as [18]

pn =
∫ ∞

0
dI P(I )pn(Pois)(I ) pn

(Pois)(I ) = 1

n!
I ne−I . (55)

Distributions pn which can be represented in the above form withP > 0 (P � 0)
were recently defined as classical (nonclassical) [24]. Nonclassicality ofpn means strong
nonclassicality of the corresponding states.

Among sp(N,R) BG CS there are strongly nonclassical states as well (the definition of
strong nonclassicality for multimode states is discussed below), such as, for example, the
cat states

|α, φ〉 = Ñ (|α〉 + eiφ| −α〉) (56)

the normalization constant being

Ñ = (2(1+ cosφe−2r̃2
))−

1
2 = Ñ (r̃, φ).

In the case ofN = 1 the states (56) have been discussed, for example in [9, 24] and in the
fifth paper of [14]. The probability for totallyn photons in|α, φ〉 (irrespective of which
mode they belong to),n = n1+ · · · + nN , is found as

pn(r̃, φ) = Ñ(r̃, φ)2e−r̃
2 r̃2n

n!
sn(φ) sn(φ) = 2(1+ (−1)n cosφ) r̃ = |α| (57)

and the functionln(r̃, φ) takes the form

ln(r̃, φ) = l̃n(r̃, φ)(sn−1(φ)sn+1(φ)− s2
n(φ)) (58)

where the functioñln,

l̃n = Ñ(r̃, φ)2e−r̃
2 r̃4n

n!(n− 1)!

is non-negative. The non-negative factorsn(φ) is seen to be a bounded and oscillating
function of bothφ and n, sn(φ) = sn+2(φ). Then for everyφ 6= ±π/2 the combination
sn−1(φ)sn+1(φ)−s2

n(φ) is negative for alln for which (−1)n cosφ > 0. Noting that the total
photon number distributionpn(r̃, φ), equation (57), coincides with that for the one-mode
states|α̃, φ〉, |α̃| = r̃, we conclude that all one-mode states|α, φ 6= ±π/2〉 are strongly
nonclassical (the strong nonclassicality of the one-mode states|α, φ〉 was also proved in the
very recent E-print [24]).

One way of generalizing the notion of strong nonclassicality to multimode states is to
apply the above definition to the total photon number distribution, the other is to require
this for every mode. One can easily verify, that in theN -mode states|α, φ〉 the conditional
photon distributionspn1,...,ni ,...,nN (α, φ) for the individual modei (nk 6=i being fixed) also
obey the inequality (54). Thus|α, φ 6= ±π/2〉 are strongly nonclassical according to both
criteria.
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Now consider thesquared amplitude quadrature squeezing[17] in the multimode states.
We first note that the BG-type CS for any Lie algebra cannot exhibit squeezing of the
quadraturesXij and Yij of Weyl operatorsEij since here the variances ofXij and Yij
are equal which stems from their eigenvalue property (15) [1]. In the quadratic boson
representationEij = aiaj and Xij (or Yij ) squeezing is multimode squared amplitude
squeezing. The quadratureXij (Yij ) of aiaj is said to be squeezed in a state|9〉 if the
variance1Xij (1Yij ) is less than its value in the ground state|0〉. Thus quadratic field
squeezing does not occur in|α;C−, C+〉. We shall see that macroscopic superpositions of
two such states do exhibit quadratic squeezing. However, let us first make some general
remarks about the SS of two and several observables.

Squeezing of the two quadraturesX and Y of a non-Hermitian operatorA (for
definiteness we writeA = X + iY ) can be achieved in two ways:

(a) in the eigenstates|z, u, v〉 of complex combinationuA+ vA† (generalized IS) [1];
(b) in the eigenstates|z〉(2) of A2 (generalized cat states).
The first possibility was proved and demonstrated (in the examples ofSU(1, 1)

and SU(2) generators in the seriesD+(k) and D(j)) in [1, 4]. These SS minimize
the Schr̈odinger inequality and therefore were called Schrödinger (or generalized) IS. A
particular case of the SS of type (a) are the SS for general systems [25], introduced as states
minimizing the Heisenberg inequality, which is a particular case of that of Schrödinger. The
second possibility (b) can be proved easily by calculations using the eigenvalue condition
of A2 and taking into account the Schrödinger relation. This can also be checked directly
on the example of the following two types of superposition states

|z;ϕ〉 = cosϕ|z〉 + i sinϕ| − z〉 |z, φ〉 = N (|z〉 + eiφ| − z〉) (59)

where |z〉 are eigenstates ofA, A| ± z〉 = ±z| ± z〉. These states can exhibit squeezing
according to the stronger criterion, given in [1] (see also below).|z;ϕ〉 and |z, φ〉 are
eigenstates ofA2 (and not ofA, unlessϕ = nπ/2, n = 0, 1, . . .). Eigenstates|z〉(2) of A2

which are not eigenstates ofA are superpositions of|± z〉. Therefore the SS of type (b) are
cat states.|z;ϕ〉 and|z, φ〉 in (59) are examples of such SS for anyA for which eigenstates
| ± z〉 do exist. In fact first- and higher order squeezing ofX and Y can occur in states
which are eigenvectors ofAn for anyn > 1 and such eigenvectors can be easily expressed
as discrete superpositions of several|z〉.

The operatorS(u, v) which transforms the nonsqueezed|z〉 to the SS of type (a),
|z, u, v〉, was defined in [1, 6] as a generalized squeeze operator (ifA = a thenS(u, v) is
the known canonical squeeze operator [41, 42]). Having established that eigenstates|z〉(2)
of A2 can universally exhibit squeezing of the quadrature ofA we can define, in analogy
with the previous case, asqueeze operator of the second kindSII by means of the relation

|z〉(2) = SII |z〉. (60)

We can point out an example of such a squeeze operator—that is the operatorS(ϕ) of
equation (51). It maps the multimode CS|α〉 to the weakly nonclassical states (sp(N,R)

BG CS)|α;ϕ〉 which are eigenstates ofaiaj (thesp(N,R) BG CS) and do exhibit quadrature
squeezing (see the graphicsf1 on figure 1).

The main difference between the above two types of SS is the following. SS of type (a)
can exhibit arbitrary strong squeezing ofX or Y , while the squeezing in SS of type (b) is
always bounded, since eigenstates ofA2 ∼ (X+ iY )2 can never tend to an eigenstate ofX

or Y . The family of states in which arbitrary strong squeezing (‘ideal squeezing’) ofX or
Y is possible could be called theidealX-Y SS. Thus the Schr̈odinger IS, in particular the
canonical SS [41], are idealp-q SS. We follow the definition ofX-Y SS according to [1]:
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a state|9〉 is X-Y SS if1X < 10 or 1Y < 10, where10 is the lowest level at which the
equality1X = 1Y can be maintained. The lowest level is reached on some eigenstate|z0〉
of A. For the quadratures ofak, k = 1, 2, . . . , and(aiaj )k the lowest level is reached in the
ground state|0〉. Linear and/or quadratic squeezing in ideal one-mode squared amplitude SS
(eigenstates|z; u, v〉 of ua2+va2) is considered in papers (for different ranges of parameters
u, v) [17, 30, 31, 5, 43, 44]. The diagonalization ofuak + va†k for k > 2 is discussed in
the very recent E-print [45].

A family of states in which the squeezing of quadratures of any productaiaj ,
i, j = 1, 2, . . . , N , can occur should be called a family ofmultimode squared amplitude
SS. An example of such a multimode SS is given by the Robertson [6] IS, which should
be eigenstates of complex combinationsukl;ij aiaj + vkl;ij a†i a†j (summation over repeated
indices). These areideal multimode squared amplitude SS. Multimode quadratic SS of
type (b) are defined as eigenstates of all squared products(aiaj )

2. They take the form (29).
Next we consider cat-type squared amplitude SS. One example of two-mode cat-type

second-order SS is considered in [20], which, however, was examined for ordinary squeezing
only. Here we provide examples of multimode cat-type SS which can exhibit both quadratic
and linear squeezing and other interesting statistical properties. Such SS are the following
macroscopic superpositions|α, φ, ψ〉 of the sp(N,R) algebraic CS|α, φ〉 (|α, φ〉 are
defined in equation (56)):

|α, φ, ψ〉 = N (|α, φ〉 + eiψ | −α, φ〉) (61)

whereN is the normalization constant, which obeys (21) and has the form

N (r̃, φ, ψ) = 1√
2
(1+ 2Ñ 2e−r̃

2
(cosφ cos(r̃2− φ + ψ)+ cos(r̃2+ φ − ψ)))− 1

2 (62)

Ñ being given in equation (62) and̃r = |α| =
√
|α1|2+ |α2|2+ · · · + |αN |2.

We demonstrate the quadrature squeezing on the example of individual mode operators
ai (linear squeezing) anda2

i (quadratic squeezing). Note that|α, φ, ψ〉 are not factorized
over the different modes. The variances1pi and1qi of the quadratures of thei mode
annihilation operatorai , ai = (qi + ipi)/

√
2 are

12pi(r̃, ri, θi, φ, ψ) = 1
2 + 〈a†i ai〉 − Re〈a2

i 〉 − 2(Im 〈ai〉)2
12qi(r̃, ri , θi, φ, ψ) = 1

2 + 〈a†i ai〉 + Re〈a2
i 〉 − 2(Re〈ai〉)2 (63)

whereri = |αi |, θi = argαi and

〈ai〉 = −2αiN 2Ñ 2e−r̃
2

sinφ(1+ i)(e−r̃
2 + cos(r̃2− φ + ψ)+ sin(r̃2− φ + ψ))

〈a†i ai〉 = 4r2
i N 2Ñ 2(1− cosφe−2r̃2 − e−r̃

2
(cosφ sin(r̃2− φ + ψ)+ sin(r̃2+ φ − ψ))).

(64)

As functions ofθi the variances ofpi andqi oscillate with periodπ and1pi(θi + π/2) =
1qi(θi). Linear squeezing is exhibited in states, for example|α, 0, ψ〉 with ri = 0.05,
r̃ close to ri , θi = π/4, φ = 0 and ψ around 3.152 (see figure 1). Maximalpi
(qi) squeezing is obtained wheñr = ri (i.e. when only one mode is excited). Here
12pi > 0.275= 12pi(0.05, 0.05, π/4, 0, 3.131) = 12qi(0.05, 0.05, π/4, 0, 3.153). When
r̃ is increasing the graphics of1pi and1qi (as functions of the anglesφ andψ) become
smoother and tend to a constant value, independent of the superposition parametersφ and
ψ . In the above states|α, 0, ψ〉 the Mandel factorQi for the modei is negative in the
vicinity of ψ = π only. By its definition the quantitỹr2 coincides with the intensity of the
field (the total mean number of photons〈a†a〉 =∑N

i 〈a†i ai〉) in the multimode CS|α〉. The
field intensity in the multimode superposition states|α, φ, ψ〉 reads

〈a†a〉 = 4r̃2N 2Ñ 2(1− cosφe−2r̃2 − e−r̃
2
(cosφ sin(r̃2− φ + ψ)+ sin(r̃2+ φ − ψ))). (65)
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We see that〈a†a〉 is an increasing function of̃r, r̃ = |α|.
The variances of the quadraturesXi, Yi of the squared individual mode amplitudea2

i ,
a2
i = (Xi + iYi)/

√
2, in |α, φ, ψ〉 is easily obtained in the form

12Xi(r̃, ri, θi, φ, ψ) = 1+ 2〈a†i ai〉 + 〈a†2i a2
i 〉 + r4

i cos(4θi)− 2(Re〈a2
i 〉)2

12Yi(r̃, ri, θi, φ, ψ) = 1+ 2〈a†i ai〉 + 〈a†2i a2
i 〉 − r4

i sin(4θi)− 2(Im 〈a2
i 〉)2

(66)

where

〈a2
i 〉 = −4iα2

iN 2Ñ 2e−r̃
2
(cosφ sin(r̃2− φ + ψ)− sin(r̃2+ φ − ψ))

〈a†2i a2
i 〉 = 2r4

i N 2(1− 2Ñ 2e−r̃
2
(cosφ cos(r̃2− φ + ψ)+ cos(r̃2+ φ − ψ))).

(67)

As functions of the angleθi the variances ofXi and Yi oscillate with periodπ/2 and
1Xi(θi + π/4) = 1Yi(θi).

The variances1Xi and 1Yi are squeezed if they are less than their value of 1 in
the ground state|0〉. This holds, for example, in states|α, 0, ψ〉 with r̃ close/equal to
ri 6 1, θi = nπ/4, φ = 0 andψ around zero, the minimal value of12Xi and12Yi (at
r̃ = ri = 0.88) being equal to 0.69. In the states|0.8e±iπ/4, 0, ψ〉 linear and quadratic
squeezing can occur simultaneously (see graphicsg1 andg4 on figure 2: jointXi- andpi-
(Yi- andqi-) squeezing occurs in the interval 6.46 ψ 6 7.4). In the above intervalQi > 0,
whereQi is the Mandel factor for the individual modei.

On figure 2 graphics are shown of12Xi(r̃, ri, π/4, 0, ψ) as a function of the angleψ
for fixed ri = 0.8, and three different values of the total excitation parameterr̃, r̃ = 0.8= ri
(i.e. only modei excited, graphicsg1), r̃ = 1 (graphicsg2) and r̃ = 1.2 (graphicsg3). One
sees, that graphics of1Xi(ψ) become rapidly smoother and tend to a constant value when
r̃ is increasing.

An important statistical property of all states|α, φ, ψ〉 is that they arestrongly
nonclassicalin the sense of the definition of [18] (discussed above), which we apply here
to the total photon number (and to the conditional individual mode number) distribution
in the multimode states. The total photon number distributionpn(r̃, φ, ψ) takes the form

Figure 2. Squared amplitude quadrature squeezing in superpositions states|α, φ, ψ〉 for
ri = 0.8. 1X̃i = 1X̃i(r̃, ri , θi , φ, ψ), X̃2

i = Xi or Yi , r̃ = |α|. g1 = 12Xi(ri , ri ,
π
4 , 0, ψ) =

12Yi(ri , ri ,− π4 , 0, ψ), g2 = 12Xi(1, ri , π4 , 0, ψ), g3 = 12Xi(1.2, ri , π4 , 0, ψ), g4 =
212pi(ri , ri ,

π
4 , 0, ψ) = 212qi(ri , ri ,− π4 , 0, ψ). JointX andp (or Y andq) squeezing occurs

in the interval 6.4< ψ < 7.4.
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Figure 3. Probabilitiespn(r̃, φ, ψ) to find n photons in the multimode superposition states
|α, φ, ψ〉 as functions ofr̃ = |α| for different values ofφ andψ . p0 = p0(r̃,

π
2 , π), p1 =

p1(r̃, π,− π2 ), p2 = p2(r̃, 0, π),p3 = p3(r̃, π,
π
2 ), p4 = p4(r̃,

π
4 ,

π
4 ), p5 = p5(r̃, π,− π2 ).

Figure 4. Oscillating photon number distributionspn(r̃, φ, ψ) in strongly nonclassical states
|α, φ, ψ〉 for different values ofr̃, φ and ψ . pn1 = pn(0.8, 0, 7.3) (Q > 0, 1p > 0.38,
1X > 0.73),pn2= pn(2.2, π,− π2 ) (Q < 0),pn3= pn(0.55, 5.0914, 0) (Q = −0,1p > 0.38,
1X > 1).

similar to that of equation (57),

pn(r̃, φ, ψ) = p̃n(r̃, φ, ψ)sn(φ, ψ)
sn(φ, ψ) = |1+ (−1)neiφ + ineiψ + (−i)nei(ψ−φ)|2 (68)

where

p̃n(r̃, φ, ψ) = N 2(r̃, φ, ψ)Ñ 2(r̃, φ)e−r̃
2 r̃2n

n!
.

The factorsn(φ, ψ) is bounded from above and as a function onn oscillates with period
4. Therefore the inequality (54) is satisfied in all states|α, φ, ψ〉 for thosen for which sn
reaches its local maximum. This proves that all|α, φ, ψ〉 are strongly nonclassical. Note
that the factorslni for conditional distribution ofni (nk 6=i fixed) also satisfy the inequality
(54).
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Figure 5. Nonoscillating photon number distributions in strongly nonclassical states|α, φ, ψ〉
for different values ofr̃ = |α|, φ and ψ . pn1 = pn(0.55, 2.246, 0) (Q < 0, 1q > 0.5,
1X > 1),pn2= pn(0.55, 2.33, 0) (Q < 0,1q > 0.43,1X > 1),pn3= pn(0.55, 2.234 384, 0)
(Q = +0, 1q > 0.5, 1X > 1), pn4= Poisson distribution with〈a†a〉 = 0.685 as inpn3.

As in the case of|α, φ〉 here pn(r̃, φ, ψ) again coincides with the probability to
find n photons in the one-mode states|α̃, φ, ψ〉, |α̃| = r̃, α̃ = r̃eiθ̃ . The distributions
pn(r̃, φ, ψ) do not depend oñθ . It can be oscillating or nonoscillating and with positive,
negative or vanishing individual modeQ factor. No definite relations exist between the
sign of Q, the photon number oscillations and the amplitude quadrature squeezing: all
possible combinations of these three properties can be found in strongly nonclassical
states|α, φ, ψ〉. In figures 4 and 5 representative graphics of oscillating (figure 4) and
nonoscillating (figure 5) photon distributions are shown. The sign of the corresponding
Q and the inequalities for1q(θ̃) and1X(θ̃) for each of the graphics are also given. In
the recent E-print [24] examples of classical states with oscillating photon distributions
were pointed out. Thus photon number oscillations are neither necessary nor sufficient for
nonclassicality of quantum states.

TheQ factor is bounded,Q > −1, and whenQ = −1 then the variance1n of n̂ is
vanishing. This means [1] that the corresponding state is an eigenstate|n〉 of n̂ (a Fock
state) andpn(|n〉) = 1. In figure 3 photon probabilitiespn(r̃, φ, ψ), n = 0, 1, 2, 3, are
shown as functions of̃r for several values ofφ andψ . At r̃ → 0 one obtainspn = 1. For
N > 1 this yields thefinite superpositions of multimode Fock states|n〉, n0+· · ·+nN = n,
and for the one mode case,N = 1,—the number state|n〉 with n = 0, 1, 2 or n = 3. We
see from figure 3 that practically the states|α, φ, ψ〉 with the correspondingφ,ψ coincide
with Fock states|n〉, n = 1, 2, 3, for |α| 6 0.5 (thenpn > 0.999 95). In the multimode
case for|α| 6 0.5 the specific form of superposition of several|n〉 depends on the specific
values of|αi |, |α1| + · · · + |αN | 6 0.5. If αk 6=i = 0 then alln photons/bosons are in the
modei, i.e. the Fock state is|n〉 = |0, . . . , ni = n, 0, . . . ,0〉. There is a growing interest
in obtaining Fock states from macroscopic superpositions of (so far mainly one mode) CS
|α〉 (see [37] and references therein). Here we provided an example, probably the first one,
of obtaining Fock states of multimode systems.
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6. Concluding remarks

We have constructed and discussed some properties ofsp(N,R) and u(p, q) algebraic
(algebra related) CS in the quadratic boson representation. These states are a generalization
of the su(1, 1) CS of BG [8] and are constructed as eigenstates of all mutually commuting
Weyl lowering operators. The quadratic boson realizations ofsp(N,R) and u(p, q) are
reducible. Therefore the corresponding group related CS [10] are not overcomplete in
the whole Hilbert space of statesH. The BG-type CS are very large sets and afford the
possibility to resolve the unity operator inH by means of some subsets. We pointed out such
subsets of thesp(N,R) algebra related CS (and their superpositions as well) and wrote down
the relations between the establishedu(p, q) CS representations and the familiarN -mode
canonical CS representation, in particular between thesu(1, 1) BG CS and the two-mode
canonical CS representations.

The new states can exhibit interesting statistical properties, such as amplitude quadrature
squeezing, sub- and super-Poissonian photon statistics and oscillations in photon number
distributions. All states from the overcomplete subfamily|α;ϕ〉 of thesp(N,R) BG type CS
are weakly nonclassical [18] and (some of them) can exhibit amplitude quadrature squeezing
as well. Strongly nonclassical [18]sp(N,R) algebra related CS were also pointed out.

Noting that the BG-type CS|z〉 cannot exhibit squeezing of the quadratures of the
Weyl generatorsEij we anticipated that such squeezing should occur in eigenstates ofEmij ,
m > 2, which for E2

ij = (aiaj )
2 are called multimode squared amplitude Schrödinger

cat states. Squared amplitude squeezing in the individual modes is demonstrated in the
superpositions|α, φ, ψ〉 of two sp(N,R) CS. These are strongly nonclassical states and at
small |α| (|α| < 0.5) and for specific values of the anglesφ,ψ practically coincide with
superpositions of several multimode Fock states|n〉 with the total number of photons/bosons
n = 1, 2 or n = 3. If αk 6=i = 0 then alln photons are of the modei, i.e. we have a single
multimode Fock state. The Fock state engineering via discrete superpositions of canonical
CS|α〉 is of current interest in the literature (one mode mainly). We have shown that discrete
superpositions of multimode canonical CS are naturally encompassed in the framework of
sp(n, R) BG-type CS and their linear combinations. The weakly nonclassicalsp(N,R) BG
CS |α;ϕ〉 can be generated from CS|α〉 by means of the second kind of (unitary) squeeze
operator. This should be considered in greater detail elsewhere.
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Appendix

A.1. The correspondence rule between theN -mode canonical CS andu(p, q) BG-type CS
representations

The multimode CS|α〉 are overcomplete in theN -mode boson system Hilbert spaceH,
spanned by the number states|n〉 = |n1, . . . , nN 〉. In the canonical CS representation a state
|9〉 is represented by the analytic functionFCCS(α;9) of N variablesαi , i = 1, . . . , N ,

FCCS(α, 9) = 〈α∗‖9〉 ‖α〉 =
∑

n1,...,nN

α
n1
1 . . . α

nN
N√

n1! . . . nN !
|n〉. (69)
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Theu(p, q) BG-type CS‖z; l, p, q〉, equation (41), are overcomplete in subspacesHl ,
satisfying the resolution unity equation (42). Hereafter if a state|9〉 ∈ Hl ⊂ H, then in
the u(p, q) CS representation this state is represented by the analytic functions ofN − 1
variableszk, k = 1, . . . , N − 1,

Fl(p, q,z;9) = 〈q, p, l; z∗‖9〉. (70)

The relation between the two representatives of|9〉 immediately follows from the expansion
(37) and equations (40) and (44):

FCCS(α, 9) =
∞∑

l=−∞
α−lN Fl(p, q,z;9) zk given by equation (40). (71)

This formula is efficient for the transition from{Fl} to FCCS if one knows the representatives
Fl(p, q,z;9). In the opposite direction the transition formula is easily obtained from (70),
(37) and the orthogonality betweenHl andHl′ 6=l ,

Fl(p, q,z
′;9) = 1

πN

∫
d2ααlN 〈q, p, l; z′∗‖z(α); l, p, q〉e−|α|

2
FCCS(α;9) (72)

wherez(α) is given according to (40) and‖z; l, p, q〉 is the state (41).
The u(p, q) CS representation is not yet fully specified (this could be a subject for a

separate work), except for the case ofp = 1 = q (N = 2 when it coincides with the well
known su(1, 1) BG CS representation [8]. In this case the relation (71) is rewritten in the
simpler form

FCCS(α1, α2, 9) = Fl=0(z;9)+
∞∑
l=1

(αl1+ αl2)Fl(z;9) z = α1α2. (73)

The BG representation is given [8] in terms of Bargman indexk, not in terms of l:
|9〉 → FBG(z, k;9). The relation betweenl andk is l = ±√4k(k − 1)+ 1, or

k = 1
2(1+ |l|) l = n1− n2. (74)

One hasFl60(z;9) = FBG(z, k = (1+ |l|)/2;9), Fl>0(z;9) = FBG(z, k = (1+ l)/2;9)
and

FCCS(α1, α2;9) = FBG(z, k = 1
2;9)+

∑
k>1

(α2k−1
1 + α2k−1

2 )FBG(z, k;9) z = α1α2.

(75)

The relation (74) stems from the definition ofk by means of the Casimir operator:
C2 = K2

3 − 1
2(K+K− + K−K+) = k(k − 1). In the two-modesu(1, 1) representation

(9) we haveC2 = − 1
4 + L2/4 which tell us that bothl and−l lead to the same values of

C2, that is the representations realized in the subspaces with±l are equivalent. However,
for the transitions between canonical CS and BG representations the sign ofl is significant
and is taken into account in (73) by the identification of the standardsu(1, 1) notation
|n+ k, k〉 of the eigenstates ofK3 once with the two-mode Fock state|n+ |l|, n〉 (the first
term in the sum in (75)) and second with|n, n+ |l|〉 (the second term in the sum in (75)).
Keeping in mind the latter identification rule we can express the two-mode canonical CS
|α1, α2〉 in terms of BG CS|z; k〉,
|α1, α2〉 = |z; k = 1

2〉 +
∑
k>1

(α2k−1
1 + α2k−1

2 )|z; k〉 z = α1α2. (76)
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A.2. On the overcompleteness of eigenstates ofA2n

Let {|z〉} be an overcomplete family of eigenstates of anN non-Hermitian operatorAi ,
Ai |z〉 = zi |z〉,

1=
∫

dµ (z, z∗)|z〉〈z| (77)

where dµ(z, z∗) = F(|z1|, . . . , |zN |)d2z. We note that the requirement of the weight
function F not to depends on the phases ofzi . This, for example, holds for theN -mode
canonical CS,sp(N,R) andu(p, q) CS (23) and (41). Consider the sequence of families
|z2n;ϕ1, . . . , ϕn〉,
|z2n;ϕ1, . . . , ϕn〉 = cosϕn|z2n−1;ϕ1, . . . , ϕn−1〉 + i sinϕn| − z2n−1;ϕ1, . . . , ϕn−1〉 (78)

where ϕk, k = 1, . . . , n, are angle parameters,n is any positive integer andz2n is the
N -component column(z2n

1 , . . . , z
2n
N ) of eigenvalues of powersA2n

i of operatorsAi ,

A2n
i | ± z2n;ϕ1, . . . , ϕn〉 = ±z2n

i | ± z2n;ϕ1, . . . , ϕn〉. (79)

|z2n;ϕ1, . . . , ϕn〉 are superpositions of 2n states|z〉 with zi on circles of radius|zi |. If all
ϕk are integer multiple ofπ/2 then one obtains the states| ± z〉. Independent parameters
arez, ϕ1, . . . , ϕn, therefore one could also use the notation|z;ϕ(n)〉 (as in section 3).

Theorem.If in equation (77) dµ(z, z∗) = F(|z1|, . . . , |zN |) d2z then

1=
∫

dµ (z, z∗)|z2n;ϕ1, . . . , ϕn〉〈ϕ1, . . . , ϕn; z2n | n = 0, 1, 2, . . . . (80)

Proof. The theorem is valid forn = 0 by construction. It is not difficult to check directly,
that it is valid for severaln > 0. Now suppose that it is valid forn−1. Then we shall prove
that it is also valid forn. Indeed, using the definition (78) and noting that−z2n

j = iz2n−1

j

we obtain for the projectors in (80) the expression,

|z2n;ϕ1, . . . , ϕn〉〈ϕ1, . . . , ϕn; z2n | = cos2 ϕn|z2n−1;ϕ1, . . . , ϕn−1〉〈ϕ1 . . . , ϕn−1; z2n−1|
+ sin2 ϕn| − z2n−1;ϕ1, . . . , ϕn−1〉〈ϕ1 . . . , ϕn−1;−z2n−1|
+i cosφn sinϕn|z2n−1;ϕ1, . . . , ϕn−1〉〈ϕ1, . . . , ϕn−1;−z2n−1|
−i cosφn sinϕn| − z2n−1;ϕ1, . . . , ϕn−1〉〈ϕ1, . . . , ϕn−1; z2n−1|. (81)

We substitute this expression into equation (77) and then in the second and in the last
integral change the integration variableszi to zj exp[iπ/2n−1] (rotation on angleπ/2n−1).
Then we note that under such rotation the eigenvaluesz2n−1

j of A2n−1
change the sign, i.e.

|z2n−1;ϕ1, . . . , ϕn−1〉 → |−z2n−1;ϕ1, . . . , ϕn−1〉. This yields the cancellation of the last two
integrals and the coincidence of the first two ones in view of the rotational invariance of
the resolution unity measure dµ(z, z∗) = F(|z1|, . . . , |zN |)d2z. We obtain∫

dµ (z, z∗)|z2n;ϕ1, . . . , ϕn〉〈ϕ1, . . . , ϕn; z2n |

=
∫

dµ (z, z∗)|z2n−1;ϕ1, . . . , ϕn−1〉〈ϕ1, . . . , ϕn−1; z2n−1| = 1. (82)

�
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A.3. On the uniqueness of the resolution unity measuresdµ(z, l, p, q) for u(p, q) CS

The resolution unity measure for a given continuous family of states is generally not unique.
It could be unique if a certain constraint is imposed on the class of admissible measures.
For example, the requirement ofinvariance of the measure on the group manifold under
the group action determines it uniquely [11]. As a result the resolution unity measure for
the group related CS is unique if it is invariant under the group action. For canonical SS
families of noninvariant resolution unity measures have been constructed in [46]. Canonical
SS minimize the Schrödinger uncertainty relation and can be regarded as group related CS
for the semidirect product ofSU(1, 1) and the Heisenberg–Weyl group [46].

In this section we establish that the resolution unity measure for theu(p, q) CS (41)
is uniquely determined by the requirement of the weight functionF(z1, . . . , zN−1) to be a
smooth function of|zi | and independent of argzi , i = 1, 2, . . . , N − 1; such is our weight
function in equation (42).

Suppose that there exists another functionF ′(|z1|, . . . , |zN−1|; l, p, q) such that the new
measure dµ′ = F ′d2z resolves the unity 1l as in equation (42). Then we should have

0=
∫

d2z [F(|z̃p|, |z̃q |; l, p, q)− F ′(|z1|, . . . , |zN−1|; l, p, q)]‖z; l, p, q〉〈q, p, l; z‖.
(83)

Substituting the expansion (41) of‖z; l, p, q〉 and integrating with respect to angles
ϕi = argzi we obtain that the difference function

8(r1, r2, . . . , rN−1) ≡ F(r̃p, r̃q; l, p, q)− F ′(|z1|, . . . , |zN−1|; l, p, q)
where r̃p ≡ |z̃p| =

√
r2

1 + · · · + r2
p and r̃q ≡ |z̃q | =

√
r2
p+1+ · · · + r2

N−1, should be

orthogonal to the monomials

r
2n1+1
1 . . . r

2nN−1+1
N−1 ri = |zi | i = 1, . . . , N − 1 ni = 1, 2, . . . .

Changing the integration variables and redenotingr2
i again asri one can write this

orthogonality in the form∫ ∞
0

dr1 . . . drN−18(r1, . . . , rN−1)r
n1
1 . . . r

nN−1

N−1 = 0 (84)

where ni = 1, 2, . . ., i = 1, . . . , N − 1. Equation (84) implies that8(r1, . . . , rN−1) is
decreasing exponentially as the total radiusr2

1 + · · · + r2
N−1 tends to∞. This means that

the integral
∫∞

0 82 dr1 . . .drN−1 is finite. It also follows from equation (84) that8 is
orthogonal to any functionf (r1 . . . rN−1) which admits power expansion in terms ofri ,
i = 1, 2, . . . N − 1,∫ ∞

0
dr1 . . .drN−18(r1, . . . , rN−1)f (r1 . . . rN−1) = 0. (85)

This implies that8 ≡ F − F ′ = 0 almost everywhere. Indeed, if8 6= 0 it must be
nonpositive definite (in order to obey (84)) and if8 is well behaved (it is sufficient to be
continuous) we could findf which is negative in the domains where8 < 0. However, then
we could not maintain (85), unlessF = F ′ almost everywhere. We suppose in (85) that
the integral of the power series off is a sum of terms of the type of (84). This is ensured
if 8 is a smooth function (i.e. all derivatives finite) ofr1, . . . , rN−1 (our F , equation (43),
is such a function). In this case we can take in (85)f = 8. Then we obtain thatF andF ′

should coincide pointwise. Thus the resolution unity measure (43) is unique within the set
of smooth functions of|z1|, . . . , |zN−1|.
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A.4. Proof of the representation (46) of the Bessel functionKν(z)

In the case ofq = 1 (p = N − 1) and−l > 0 our measure functionF , equation (43),
depends onr1, . . . , rp through |z| = [|z1|2 + · · · + |zp|2]1/2 ≡ r̃p and it is a smooth and
positive function ofr1, . . . , rp. The measure function of [7]F ′ ∼ r̃−l−p+1

p K−l−p+1(2r̃p) is
also smooth and positive [26]. Therefore the difference8 of these two functions is smooth
and in view of (84) and the result of the preceding section they have to coincide pointwise.
This proves formula (46) for Imz = 0,Rez > 0 andν = −l − p + 1= 0,±1, . . . .

Let us consider the right-hand side of (46) as a definition of a new functionF(z; ν),
z complex, ν real. The integral is convergent for Rez > 0 and the functionF(z; ν)
is evidently analytic with respect toz and ν. The Bessel functionKν(z) is analytic
and regular everywhere except of the negative half of the real line inz-plain [26]. We
proved in the above that the two analytic functionsF(z; ν) andKν(2z) (ν = 0,±1, . . .)
coincide on the positive part of the real line ofz. Then they coincide in the whole
domain of analyticity inz-plain. Numerical computations show that formula (46) holds
for complexν as well. In conclusion let us note that the integral in the right-hand side
of equation (43) correctly defines (under replacements|z̃p| → z1, |z̃q | → z2) analytic
functionsF(z1, z2; l, p, q) of the two variablesz1 and z2, Rez1,2 > 0. At z2 = 0, q = 1
we haveF(z1, 0; l, p,1) = 2π−p|z1|1−l−pK1−l−p(2z1).
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