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Abstract. The Barut-Girardello (BG) coherent states (CS) representation is extended to the
noncompact algebrag(p, ¢) and sp(N, R) in (reducible) quadratic boson realizations. The
sp(N, R) BG CS take the form of multimode ordinary Sodinger cat states. Macroscopic
superpositions of 21 sp(N, R) CS (2" canonical CSp = 1, 2, ...) are pointed out which are
overcomplete in theV-mode Hilbert space and the relation between the canonical CS and the
u(p, q) BG-type CS representations is established.

The sets ofu(p, g) andsp(N, R) BG CS and their discrete superpositions contain many
states studied in quantum optics (even and ddchode CS, pair CS) and provide an approach
to quadrature squeezing, alternative to that of intelligent states. New subsets of weakly and
strongly nonclassical states are pointed out and their statistical properties (first- and second-
order squeezing, photon number distributions) are discussed. For specific values of the
angle parameters and small amplitude of the canonical CS components, these states approach
multimode Fock states with one, two or three bosons/photons. It is shown that eigenstates
of a squared non-Hermitian operata? (generalized cat states) can exhibit squeezing of the
quadratures ofd.

1. Introduction

Recently there has been much interest in applications and generalizations of the Barut—
Girardello (BG) coherent states (CS) [1-7]. The BG CS were introduced in [8] as eigenstates
of the lowering Weyl operatok _ of the algebrasu(1,1). The BG CS representation

has been used for explicit construction of squeezed states (SS) for the generators of the
group SU (1, 1) which minimize the Sctirdinger uncertainty relation for two observables

[1] and of eigenstates of general elements of the complexified algebid, 1) [4, 5]. The
overcomplete families of eigenstates of elements of a Lie algebra were called algebraic CS
[4] and algebra eigenstates [9, 5]. The idea to construct SS for quadratures of any non-
Hermitian operatod as eigenstates of complex combinatias+ vAf was put forward in

[1], where such eigenstatés u, v) were constructed foA = J_ andA = K_, J_ andK_

being the Weyl lowering operators of (2) andsu(1, 1) Lie algebras correspondingly. The
su(1, 1) BG CS differ from theSU (1, 1) group related CS (see [10] and references therein):
the highest weight vector is the only common state, whilesthg, 1) algebra related CS

|z, u, v; k) of [1] contain the whole set o§U (1, 1) group related CS with symmetry. The
general set of algebra related CS always contains the corresponding group related CS with
symmetry as a subset.

1 E-mail address: dtrif@inrne.acad.bg
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5674 D A Trifonov

Passing to other algebras it is initially important to construct the eigenstates of Weyl
lowering operators, which is a direct extension of the BG definition ofsthl, 1) CS
to the desired algebra. The aim of this paper is to construct a BG-type CS for the
symplectic algebrap(N, R) and its subalgebrag(p, q), p + ¢ = N, in the quadratic
boson representation. Thig (N, R) representation is of importance in various fields of
physics [11-13]. HeréV is the dimension of the Cartan subalgebra, while the dimension
of sp(N,R) isSN(2N +1)/2, N =1,2,..., [11].

We establish that thep(N, R) BG CS in quadratic boson representation takes the form
of superpositions of two multimode canonical CS [18) and| — «) (equation (20)). A
subset of these states is found which is overcomplete in the whole Hilbert $paufe
the N-mode system. Recall that the correspondfg N, R) group related CS are not
overcomplete irH since the representation is reducible. This property is a particular case
of a quite general result of the overcompleteness of the eigenstates of the p@mms
the non-Hermitian4;, j = 1,2, ..., provided the eigenstatgs), z = (z1, ..., zy), of all
A; are overcomplete with respect to a measure independent of the phagesettion 3
and appendix A.2).

Macroscopic superpositions of two canonical CS are called (ordinaryp&iciger cat
states [14, 15]. The set of thep(N, R) BG CS includes several subsets of ordinary
cat states, which are extensively studied in quantum optics (see [14, 15] and references
therein). We introducenultimode squared amplitude Sollifiger cat statess macroscopic
superpositions of twep(N, R) BG CS. Unlike the ordinary cat states these superpositions,
which eventually become combinations of faurmode canonical CS, can exhibit amplitude
and squared amplitude quadrature squeezing (first- and second-order quadrature squeezing or
linear and quadratic squeezing) [17], and other nonclassical properties. Families of weakly
and strongly nonclassical [18] cat states are pointed out as macroscopic superpositions of
two sp(N, R) CS. There are states in these families that tend to multimode Fock states with
0,1, 2 or 3 photons as the amplitude of their canonical CS components approaches zero.
We note that, unlike the case of Robertson (8dirger) intelligent states (IS) [1, 6], the
cat state squeezing cannot be arbitrarily strong.

Recently [7] the BG-type CS have been constructed fortide—1, 1) algebra. Here we
construct overcomplete families of states &gp, ¢), p+q = N, and the related resolution
unity measures as well. We show that the ‘pair CS’ [16] are in factuttie 1) BG CS
|z; k) for k = % 1..., while the ‘two-mode Scladinger cat states’ of [20] are a particular
case of oum(p, g) multimode squared amplitude cat states (48).

This paper is organized as follows. In seat®a concise review of the properties of BG
CS representation and its relations to the canonical one- and two-mode CS representation
(or Fock—-Bargman representation) [10] is given. An explicit relation between the two-
mode canonical CS and the BG CS representations is obtained. Using this relation
one can easily establish the coincidence between the generalized intelligent states (IS)
|z, u, v; k) [1] and many other one- and two-mode states, constructed by other authors
as eigenstates ofa® + va'? or uab + va'b' [21-23]. For example, for real, v the states
|z, u,v; k = %) coincide with the ‘pair excitation—de-excitation CS’ [21], while for raab
andk = (1+ |¢|)/2 they are identical to the ‘two-mode intelligesit/ (1, 1) CS’ [22].

In section 3 the BG CS are extended explicitly to the algep(&/, R) in the (reducible)
guadratic boson representation and overcomplete in wholamilies of such states are
constructed. Overcomplete families of eigenstates of the powerf 2Veyl operatorss;a;
are also built up. These states take the form of macroscopic superposition$ wéhdhical
CS components. The(p, ¢) BG-type CS are considered in section 4 (overcompleteness,
resolution unity measure, particular cases and relation of their analytic representation to that
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of canonical CS). In section 5 the statistical properties (weak and strong nonclassicality,
amplitude and squared amplitude quadrature squeezing, sub- and super-Poissonian photon
statistics) of the constructegp(N, R) algebra related CS and their superpositions are
discussed and illustrated by several graphics. Our analysis shows that photon number
oscillations are not necessary characteristics of the nonclassicality of quantum states (neither
are they sufficient [24]). We note the main difference between squeezing in intelligent SS
[1, 6, 25] and in cat type SS and construct a second kind multimode squeeze operator as a
map from CS|a) to a set of cat-type multimode SS. In the appendix several statements of
the main text are proved.

2. The Barut—Girardello coherent states

The property of canonical C&) [10] to be eigenstates of the photon number lowering
operatora, ala) = ala) (« is a complex numberaf a'] = 1) was extended by BG [8]
to the case of the Weyl lowering operatkir of su(1, 1) algebra. Here we briefly review
some of their properties. The defining equation is

K_|z; k) = z|z; k) 1)

where z is the (complex) eigenvalue aridis the Bargman index. Here, and in [1], we
introducedk = —® as a second label of the state and replaced thez B&h z/+/2. For

the discrete serieB™® (k) the parametek takes the values3, +1,.... The Cartan-Weyl
basis operator& .. = K1 +iK,, K3 of su(1, 1) obey the relations
[K31 K:t] = :I:K:t [K—a K+] = 2K3 (2)

with the Casimir operato€, = K3 — (%)[K_IQr + K,K_] = k(k —1). The expansion
of these states over the orthonormal basis of eigenstates:, k) of K3 (Ksln + k, k) =
m+k)n+kk),n=01212"..Is

00 Zn
|z; k) —NBG(|Z|’k); mm +k, k) ZNBG(|Z|7I<)||Z, k) -
1 |Z|k71/2
k) = [[(2k) /oF1(2k; |2]9)]2 = ——
Nea(lzl, k) = [T'(2k) /o F1(2k; |z]9)] RTEIED)]

where oFi(c; z) is the confluent hypergeometric functio,(z) is the modified Bessel
function of the first kind, and’(z) is the gamma function [26]. The above BG states
|z; k) are normalized to unity. Their scalar product is

(ks 215 k) = oF1(2k; 2°2)[0F1(2k; 2120 Fa(2k; |2'12)] 2 (4)

and they resolve the unity (the identity operator),
2
/ du(z Bllz k2l =1 du (@ k) = —lz/* K (22 oz ®)

whereKk, (x) is the modified Bessel function of the third kind. Note thatk) = NB‘Gllz; k),
while in [8] these non-normalized CS were denoted é&k)~1/?|z) (note also the misprint
in [8]: in the formula for the measure functien(») one should replacﬂ’m%(zﬁr) with

Ko041(24/2r) [2]). Owing to the above overcompleteness property any $tijecan be
correctly represented by the analytic function

Fag(z, k; W) = (k, 2" |W) /Nea(lzl, k) = (k, 2"||¥) (6)
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which is of the growth(1, 1). The orthonormalized statdg + n, k) are represented by
monomialsz”/+/n!T (2k + n) (we note a misprint in these monomials in [4, @&:should
be replaced by 2. The operatork, and K3 act in the spacé{, of analytic functions
Fgc(z, k) as linear differential operators
2
K=z K,=2kd—dz+z% K3=k+zd—dz. @)

This analytic representation has been used to explicitly construct eigenstates; k) of
complex combinationga K_ + vK in paper [1].

BG have established their continuous representation for the discrete g&Figs,
k= :I:%, +1,.... However, by inspection of their construction one can easily see that it also
holds forreducible representationand for% > |k| > 0—one only has to keep in mind that
the quantity 1 in the overcompleteness relation (5) is the identity operator in the subspace
Hy, wheresu (1, 1) acts irreducibly The proof consists of two observations (for concreteness
we take D™ (k)): (a) the expansions (3) are convergent and represent normalized states for
k > 0, provided|k, k 4+ n) are orthonormalized;b] the BG measured(z, k) resolves the
unity operators by means ¢f; k) for k > 0 provided the orthonormalized set [&f k + n)
is complete.

It is well known that thesu(1, 1) algebra has one- and two-mode quadratic boson
representations, which are reducible in the spaces of states of one- and two-mode systems
correspondingly. The one-mode realizationsofl, 1) is

K_= %az, K> = %atz, K3 = %(Zana +1). (8)
Its quadratic Casimir operat@t, equals— =, C, = K2 — K?— K2 = k(k—1), the Bargman
index beingk = 1, 2. The two-mode representation

K_=mar K, = aiag K3 = %(aial + a;az +1) 9)
is highly reducible (completely reducible), its irreducible components being just the
representations from the discrete ser@$(k), k = % 1,.... The whole spacé{ of the
two-mode system states is a direct sum of the irreducible mod@glesdn these realizations
the operatora K_+vK ;, which were diagonalized in [1], reai?+va'? anduaiaz+vala).

The Heisenberg—Weyl algebrag and h,, spanned by Ja;, aI and 1aq, aI, as, a;
correspondingly, act irreducibly in the state spaces of one- and two-mode systems. The
related families of CSje) and |ai, @) are overcomplete and realize the continuous
representations, which proved to be very efficient [10]. Therefore it is important to establish
the relation between BG CS and the canonical CS representations. In the canonical CS
representation every stat®) is represented by an entire analytic functiBgcs(oq, az; V)
of growth §, 2),

Focs(ag, oz; W) = exp(3(Joa|® + |oa])) (of, o3| W). (10)

In the one-mode cas€ccs(a) = exp(%|a|2)(a*|\11). The eigenvalue properties of the

BG CS and canonical CS and the realizations (8) and (9) suggest that the canonical CS
representation of a staf@) € H,; should be obtained (up to a common factor) from its BG
representation by means of substitutior= «?/2 for the one-mode system and= oo

for the two-mode system, and this is the case. The corresponding relation between the two
representations of the one-mode system states was written down in [2],

. 1, 1\ 1 1, 3
Fees(a; W) =74 | Fpe éa,k=z +72aFBG éa,kzz . (11)
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If |¥) is an even (odd) state, then the second (first) term is vanishing. For the two-mode
system states the relation betweBg:s and Fgg, defined above, is found in the form (of
proof in appendix A.1)

Focs(a, oz; W) = Fag(z, k= 5 W) + Z(aik_l + a3 Y Fao(z, k; W) 7= a100.
=1
(12)

Using these relations one can establish the coincidence between states, obtained in BG
analytic representations and other familiar states. For example, the known one-mode
even/odd CSa).+ coincide with the BG CSYz; %) and|z; 3) [2, 27], while the generalized

IS |z, u, v; k), constructed in [1] using BG representation, for= %,% are the same as

the eigenstates afa® + va'?, constructed for reak, v in [25] and for complexu, v in

[30, 4, 31, 9] using the canonical CS representation. &For % the |z, u, v; k) with real

u, v can be identified with two-modg&U (1, 1) states of [16, 21, 22]. AISU(1, 1) states of

[32, 33] can be found in the general family @i (1, 1) algebra related C®, u, v, w; k)
constructed in [4, 6, 5].

In conclusion to this section it is worth noting that tH& (1, 1) group related CS [10]
provides another analytic (in the unit disk) [28] representation of Hilbert space which has
been shown [2] to be related to the BG representation through a Laplace transform. It
is also worth making a note concerning the notation: the BG CS are eigenstates of the
lowering operatorK . = K; — iK», which belongs to the complexified algebra (1, 1).
Therefore we could denote such states@S(1, 1) algebra related CS. However, usually
when one deals with such simple complex combination as Weyl lowering/raising operators
of an algebral (K. for su(1, 1)) one writesL instead ofL¢ (su(1, 1) instead ofsx€ (1, 1)).

For brevity we follow this convention for BG CS for Lie algebras. Continuous families
of eigenstates of general elementssof (1, 1) have been considered and called (1, 1)
algebraic CS [4] oiSU (1, 1) algebra eigenstates [5]. Another motivation of the new term
‘algebra related CS’ is the following property of the BG ©Sk): unlike theh¢ algebra

CS this family cannot be represented in the form of group related CS either for the group
SU(1, 1) or for the group of automorphysm Aut:€ (1, 1)) > SU(1, 1) [29].

3. The BG CS forsp(IN, R)

The BG CS for semisimple Lie algebras can be naturally defined as eigenstates of mutually
commuting Weyl lowering (or raising) operatoFs, (Eot,) [11)):

Ea’|z> = Zo/|z>' (13)

This definition can be extended to any algebra, where lowering/raising operators exist.

We shall consider here the simple Lie algebpgN, R) (the symplectic algebra of rank
N and dimensionN(2N + 1)). We redenote the Cartan-Weyl basis Eg,Efj,H,j
(i,j=12,...,N, E;; = Ej;, Hfj = Hj;), and write thesp(N, R) commutation relations

[Eij, Eu] = [E,ij Ej]=0

[Eij, E;L] = 8jx Hyr + 8 Hji + Six Hjs + 8j Hix

[Eij, Hul = 84 Ejx + 8j1 Eix (14)

[E,:rj, Hy] = _8ikE]Tl — 8 E}y

[H;j, Hy] = 8;Hyj — 8jx Hy;.
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The BG CS|{zi}) for sp(N, R) are defined as eigenstates &f,
Eij{zu}) = zijl{zu}) i,j=12,...,N. (15)

Let us note that the Cartan subalgebra is spannedbynly and H; ;; are also Weyl
lowering and raising operators as dll; are; we have simply separated theutually
commuting lowering operator®;;. We shall construct explicitly thep(N, R) BG CS
for the quadratic boson representation, which is realized by means of the operators
E,‘j = a;a; ElTj = al]aj Hij = %(a}'a,- + a,a]r) (16)

wherea;, aj are N pairs of boson annihilation and creation operators. These operators act
irreducibly in the subspaceg§® spanned by the number states, ..., ny) with even/odd
Nyt = n1 +na + - +ny. The whole spacét of the N-mode system is a direct sum of
HE.

The sp(N, C) is the complexification ofsp(N, R) and therefore the Hermitian
qguadratures of the above operators span a@vethe sp(N, C) algebra. In the case of
N = 1 one obtains from (16) the three operatéis ; which closesp(1, R) ~ su(1, 1) (see
equation (8)). We see that eigenstates:®fthe known even/odd statés).. in quantum
optics [14]) aresp(1, R) BG CS fork = 3, 3.

One general property ofp(N, R) CS |{z}) for the representation (16) is that they
depend effectively onV complex parameterg; (not of N2 + N as one might expect).
Indeed, using the boson commutation relatioms4;] = 0 and the definition (15) we can
easily derive

ZijZkl = ZikZjl = ZilZjk (17)

wherefrom we find the factorization of the eigenvalugs

Zij = o o, 0 € C. (18)
Therefore in the above boson representation the definition (15) is rewritten as
aiaj{ogay}) = o |{ogay}), i,j=1,2,...,N. (19)

The general solution to this system of equations is most easily obtained in the canonical
CS representation [10]. In Dirac notations the solution reads

Harau}; Cy, Co) = Ch(a)|a) + C()| — a) = |a; Cy, C) (20)
where |a) are multimode canonical CSy = (o1, a2, ..., ay) and Ci(«) are arbitrary
functions, subjected to the normalization conditigat|f = o - & = |a1|2 + - - - + |ay|?)
ICH@P+1C_(@)P+2Re(C_C)N(ja) =1 N(la]) = (+a| F o) = e72F,

(21)

Thus the families of stategy; C., C_) representhe whole set ofsp(N, R) BG CS for

the representation (16). They have the form of macroscopic superpositions of multimode
canonical CS. The macroscopic superpositions of two canonical CS are also called
Schibdinger cat states [14, 15], which we shall refer to as ordinary&lihger cat states.

The set of (20) is the most general family of superpositions of the multimodexgand

| — a).

The large family ofsp(N, R) CS (20) contains many known, in quantum optics, subsets
of states [14, 15] and many others not yet studied. Let us point out some of the well
known particular subsets of (20). The limiting casesCof = 0 or C. = 0 recover the
overcomplete family of multimode canonical CS, afid = +C, produces the ordinary
multimode even/odd CS [15].
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For the one-mode systerW (= 1) several cases of the superpositions of two canonical
CS (20) are thoroughly studied (for example, see [14] for= 1 and [15] for anyN).
Nevertheless, as far as we know, even in the one-dimensional case no family @diSger
cat states was pointed out which is overcomplete in the strong sense in ihdlere we
provide such families for any.

Consider in (20) the choice of

C, = cosp C_=ising (22)
which clearly satisfy the normcondition (21) for any angle
la; @) = cosp|a) +ising| — a). (23)
In the Fock basis (number statgs, ..., ny)) we have the expansion
00 ni o ny éw(fl)"ﬁ“*"zv
o ) = &2 Y 1, ..., ny). (24)

| |
;=0 ni:...ny:

Using direct calculations we find that these states resolve the unity operator for amy
thereby provide an analytic representation in the wligle

1
1= —Nfdzala;go>(<p;a| d’a = dRews dima; ... dReay dimay. (25)
b4

States|W) are represented by functions

fola, @) =g, ' W)
on which the operatorg; and a; act as
" a
aj = P,a; a; = Pwale
where P, acts as an inversion operator with respecptoP, f(¢) = f(—¢). At ¢ =0, 7

the multimode canonical CS representatior= «;, a} = J/da; is recovered.

The notation of (15) enables us to construct eigenstates of squared Weyl opﬂ;’_f;\tors
(in any representation) as macroscopic superpositionp@¥, R) BG CS in the form £;;
are eigenvalues af;;)

{zu}; Dy, D-) = Dy({zijDl{zu}) + D-({zi; D {—zu}) (27)
where the function®. ({z;;}) have to be subjected to the normalization condition (supposing
({zutzut) = 1)

|D+ 2+ |D-? + D_D% ({zr}l{—zu}) + DD+ ({—zu}l{zu}) = 1. (28)

In the quadratic boson representation (16) these states take the form
Hoxar}: Dy, D-) = Dyl{eij}; Cy, C2) + D_[{—ajj}; C, C)
=|o;Cy,C_, Dy, D_) (29)

and can be termenhultimode squared amplitude Solifiger cat statesThey are expected
to exhibit linear and quadratic squeezing and other nonclassical properties. In view of
(20) the states (29) are eventually expressed in terms of superpositions of four multimode
canonical CS.

In conclusion to this section we note that the overcomplete family of states) admits

n angles generalization: by meansiodinglesp,, k =1, 2, ..., n, n being a positive integer,
one can construct macroscopic superpositions'd2 |«) (or, equivalently, superpositions

(26)
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of 2'~1 sp(N, R CS of the typga; ¢)), which are overcomplete and resolve the unity with
respect to the same measure” da,

| @1, ..., @) = COS@,|at; @1, ..., ¢,—1) +iSINY,| —a; @1, ..., 0u_1) (30)
1

1= —N/dzala;wl,...,tpnﬂwn, e al. (31)
b4

In every component state ifx; ¢1, ..., ¢,) the parameters; are on a circle with radius

|a;|. Forn = 0 we have CSa), for n = 1 the states (23) are reproduced.; ¢y, ..., ¢,)

are easily seen to be eigenvectors(mfaj)z"’l, and not of(a;a;))", m < 2" unlessyy

are integer multiples of /2. In the one mode cas&(= 1) |«; ¢1, ..., ¢,) are eigenstates

of a®". Eigenstates of:* for k = 1,2,..., can be easily constructed as superpositions
of sp(1, R) CS. Here we proved their overcompleteness for=2 2" = 2,4,8,32....

Some eigenstates of powers @f, k > 2, have been considered in [34]. Multicomponent
macroscopic superpositions of canonical CS (one mode only so far) are intensively studied
in quantum optics (with the final aim being the production of Fock states) [35-37].

The above result (31) is a particular case of a general theorem, proved in appendix A.2,
concerning the overcompleteness of common eigenstates of powe¥snoin-Hermitian
operatorsA?’, j=1,...,N,n=1,2,..., and valid for the case a¥-mode canonical CS
and also forsp(N, R) BG CS.

4. BG CS for the algebrau(p, q)

The algebras(p, ¢), p +q = N, are real forms ok/(N, C) and they are subalgebras of
sp(N, R) [11]. Therefore the BG CS fou(p, ¢) should be obtained fromp(N, R) CS
by a suitable restriction. In this section we consider these problems in greater detail in the
boson representation (16).

The following subset of operators of (16) close thg, ¢) algebra (o€ (p, q) if one
considers non-Hermitian linear combinations of the operators below) [11],

EOKM = dqay EJr = a]LaT Haﬂ = %(alaﬁ + aﬁai) H/ﬂ; = %(alav + lea):)
(32)

where we adopted the notatioasg,y =1,...,p,u,v=p+21,....,p+q¢,p+q=N

(while ¢, j, k,l = 1,2,...,N). For p = 1 = ¢ the three standardu(1, 1) operators

K., KzareK_= Eijp =aiaz, Ky = EIZ = aiag, K3 = (aial + agag + 1)/2. The subsets
of Hermitian operators

(r) 1 ~(p) -
Mai; = E(Haﬂ + Hﬁa - 80(/3) M()f/; = |(Hﬁa —_ 0([‘3) (33)
Ml(gf) = %(Hl” + Hyp — 811\1) M;(:{;) = i(HwL - Huv)

realize representations of compact subalgebta$ andu(g) correspondingly. Tha(p, q)
algebra (32) acts irreducibly in the subspaces of eigenstates of the Hermitian oggrator

L=Y M-S M= Hy =Y Hyu—(p—q)/2 (34)
o w o 0

This is the linear-in-generators Casimir operator and the higher Casimirs here are
expressed in terms df [13]. Denoting the eigenvalue df by / we have the expansion
H = Y2 ®H;,. The representations corresponding 4é are equivalent (but the
subspace®(., are orthogonal). We note that=Y"_ala, -2 ala,,andl =0,+1,....

The commuting Weyl lowering operators ofp, ¢) areE,, =aua,, ¥y =1,2,..., p,
wu=p+Lp+2,...,p+qg=N. We have proved in the above that eigenvalues of the
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product of two boson destruction operators are factorized. Therefong(the) BG CS in

the above boson representation can be defind{bas,}; [, p, q),
auayHaﬂav}; l,p,q) = auayHaﬂav}; I,p,q)
y=1...,p u=p+1....,p+gq

wherea,, andw, are arbitrary complex numbers. We glk; [, p, q) = [{opa}; 1, p, q),
denoting by||¥) a non-normalized (but normalizable) state, while) is normalized to
unity. Solutions to the above equations can be written in the form

(35)

a"l a”N 1 Mp ”q -l
1 N—1%N ~ ~
le I, p,g) = Z = Inl,...,nN,l;np—n;—l) (36)
iip—iig=l \/nl! coony_1l(@m, — n; — D!
wherewa;, i = 1,..., N, are arbitrary complex parametess, = »_, na, iy = Y., Ny,

ﬁ; ng —ny andl = n, —n,. In (36) summation is over alt; = 0,1, 2, ... provided
n, —n, =1 = constant.

If we multiply |l I, p, g) by exp—|a|?/2) and sum ovei we evidently obtain the
normalized multimode C$x) (for any pairp, g),

) =g 2l Z e 1, p. q). (37)

I=—00

The last equality suggests that the stadtes !, p, ¢) form overcomplete families ifi{; for
every p,q. This is the case: using the overcompletenessaf formula (37) and the
orthogonality relations

(p.q,l5alle;l, p,q) =0 forl' #1 (38)

one obtains the resolution of unity i, in terms of theu(p, q) CS|«; 1, p, q),

1
/dl/-(a)”a;l»P,CI)(P»q,l;04”=1l du () = e dPa. (39)

Now we note that in«(p, ¢) CS (36) one complex parameter, sgy, can be absorbed
into the normalization factor by redefining the rest as
21 = Q10N ..., Zp = CpOyN Zp4l = Opp1/ON, ..., IN-1 = An-_1/aN. (40)

Then we can writdje; [, p, ¢) = o' |l2; 1, p, ¢) and

ni N-1
Zq7 . Tn_ ~ ~
lz:l.p.g)= Y S ny.....ony_1iii, — ity — 1) (41)
i —itg =l \/nll coony_1l (i, — n, — D!
wherez = (z1,...,2y-1). The stated|z; [, p, ¢) are normalizable in view of

o
1=(aje) =" 3" Jan| (g, p.I; 211z L, p. q)
l=—00
which stems from (37) and (38). The normalized stated, p,q) are |z;1, p,q) =
Nlz;1, p,q), N being the normalization constant.
The family {||z;1, p,q)} is overcomplete inH; and the resolution of unity reads
(z =1V *dRez; dimz; = |ay 247 [TV ' dRew,dIm «;)

1 =/du(Z;l,p,q)llz;l,p,qﬂq,p,l;ZII

du(z,1, p,q) = F(1Z,, 12,1 L, p, q) =

(42)
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where 2,12 = |z1)> + -+ + 12,12 12412 = |zp4112 + -+ + |zy-1/?, the measure weight
function being

s 1 -
F(Zl. |Z4l: 1. p.g) = H—N/dzaN EN

E
x exp[— <|O€11\71|2 + 124 Plan]? + lanl?) |- (43)
One can prove that the above measure is unique in the class of smooth functions of
|zal, ..., |lzv—1| (see appendix A.3). Thus the explicit form ofp, ¢) BG CS is
|z;0, p,q) =Nz, ..., lav-als L p, @)z L, py q) (44)

where||z; 1, p, q) take the form of superposition (41) of multimode Fock states with fixed
value!/ of the difference number operatdr, equation (34).

Let us note some known particular cases ofiilig, ¢g) BG CS (41). Recently the case
of ¢ =1 and negativé, —/ > 0 (thenp = N — 1,7, =0, z, = 0 andz, = 2) has been
considered by Fujii and Funahashi [7]. Their resolution unity measuré({imeads

/ / 2 / 2|Z|717p+1
du'(z) = F'(Iz], 1, p, Dd*z F = e K_1—p1(2]2]) (45)
where K, (z) is the modified Bessel function of the third kind [26F’(|z|,l, p, 1) and
F(lz|,1, p, 1) do not depend on phases gf and are smooth functions &f, ..., |z,],

i.e. all order derivatives are finite. In appendix A.3 we prove that the resolution unity
measures fou(p, g) CS are unique within such a class of functions, Fé(|z|,, p, 1)
andF(|z|, 1, p, 1) should coincide. Then using the analyticity property of Bessel functions
K, (z) [26] we establish (cf proof in appendix A.4) the following integral representation for
K,(z) withv=0,4+1,...and Reg > 0

KU(ZZ) — %Z—v/ dxxv—le—(x-i—zz/x)‘ (46)
0

For p = 1,¢q = 1 our statesz; !/, p, q) recover (as the states of [7] do) the BG CS
|z; k) for the seriesD*(k) of su(1,1) [8], the Bargman indext being expressed in
terms ofl ask = (1 + |/|)/2. The irreps with+/ are equivalent, however, the states
|z;1,1,1) and|z; —[, 1, 1) are different as one can see from their definition (41) (moreover,
they are orthogonal). Thus our states+l, 1, 1) represent two equivalent but different
realizations of BG CSz; k) for k = (1 + |I])/2 = % 1,.... The exact identification is
lz:0 <0,1,1) = |lz: k), lz;1 > 0,1, 1) = 2% z; k).

The pair of CS in quantum optick, ¢) [16] (defined as eigenstates afa, with
aial—agag = ¢ = constant) appear ag1, 1) BG CS|z; k) in the two-mode representation
(N = 2in (32)). The identifications arg, g) = |z;1, 1, 1), i.e. the Agarwal andq are
equal to ourz and! correspondingly. In view of equations (42)—(45) the pair of CS are
overcomplete in the subspacts. Our |z; [, p, q) can be regarded as a generalization of
|¢, q) to the N-mode boson systeniz; [, p, ¢) are invariant under the annihilation of pairs
of two different mode bosons, one from the figstmodes, and the other from the lagt
modes. Note that in thep(N, R) CS |a, C_, C,) there is no such restriction—these are
the most general states, which are invariant under the annihilation of any pair of bosons.

The sp(N, R) CS|a, C_, C,) can be decomposed in termsufp, ¢g) CS |z;1, p, q)
with different/. For N = 2 this decomposition reads

lo: C_.C) =) 4Cllzi =1, 1, 1) + > ahCrlzi 1, 1. 1)
=0 =1 (47)

C=Cy+(-1)C_ 7= o10p.
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In analogy with the case afp(N, R), considered in section 3 we introduce thg, q)
multimode squared amplitude cat statesl, p, g; Dy, D_) as macroscopic superpositions
of u(p, q) BG-type CS|z; 1, p, q),

|z;1, p,q: Dy, D_) = Dy|z;1, p,q) + D_| — 2z:1, p,q) (48)

which are expected to exhibit squared amplitude squeezing and other nonclassical properties.
In the particular cases d¥ = 2, D_ = D, exp(i¢) the states (48) recover the two-mode
Schiddinger cat states, considered recently in [20].

5. Statistical properties of the N-mode sp(IN, R) BG CS and their macroscopic
superpositions

In this section we consider some general statistical properties of the constsp¢tédRr)
algebra related CS and their superpositions and discuss in greater detail some new subsets
of this large family.

All sp(N, R) BG-type CS minimize the Robertson multidimensional uncertainty relation
[38] for the Hermitian quadratureX;;, Y;; of mutually commuting Weyl lowering operators
E;;, since they are eigenstates of &l (proposition 3 of [6]),

deto ({X;;, Vi;}; o, C_, C1) = detC({X;;, Y;j}; o, C—, Cy) (49)

whereo is the matrix of second moments of all of the observatigsY;; (the uncertainty
matrix) and C is the antisymmetric matrix of all mean commutators X, V;; times
(=i/2). The number of commutingt;; is equal to(N? + N)/2. Robertson inequality
for n observables;, j =1,2,...,n, reads

deto ({X;}; ¥) > detC({X;}; ¥) (50)

and for a pair of operator&, Y it reduces to the Schdinger caseA2XA%Y — o2, >
([X, Y])|?/4, whereoxy = (XY + YX)/2 — (X)(Y) (for greater detail see for example,
[1, 6]). In all sp(N, R) BG CS the covariances of;; andY;; are vanishing, but those of
X;; and Xy, are not, i.e. the matrix ({X;;, ¥;;}; o, C_, C;) is not diagonal.

The subset of Schdinger cats|a, ¢), equation (23), possess several remarkable
properties:

(a) they are overcomplete in the whole Hilbert space (see equation (25));

(b) the photon statistics in every mode is Poissonian for anyand ¢. This
follows immediately from the expansion (24) in terms of multimode number states-
ln1, ...,nnN);

(c) the statega; ¢) can exhibit squeezing in the quadratuggs ¢; (for example, for
|| close/equal tde;| = 0.5, ¢ = /4 and arg; aroundnrz/2,n =0, 1, ..., the minimal
value of Ap; and Ag; being equal to 0.316—see the graphjgson figure 1);

(d) these states are physically coherent (‘true coherent’) since they satisfy the condition
of full second-order coherence of the field [39]. The latter property again follows from
equation (24), which is of the form of generalized CS of Glauber and Titulaer [39].

This interesting subfamily{|ca; ¢)} of sp(N, R) BG CS can be generated from the
familiar multimode canonical CS by means of the following operator

S(p) = expli(—=1)"p) le, ) = S(9)|a) (51)

wheren = a1a1+ e +aj\,aN is the total number operator. As strange as it may s8em
is well defined for any angle and is unitary. On any stat&) its action is

S(p)|W) = €| W), +e7%||¥), (52)
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Figure 1. Amplitude quadrature squeezing in )@ N, R) BG CS|a; ¢) and the superpositions
|a,¢, 1//), equation (61), fOrr,~ = |Ol,'| = 0.05. Aq~,‘ = A(i,(f, r,-,91,¢, lﬁ), F = |(X|, (;; = q;
or pi. f1 = A%i(ri.ri.=%.0) fo = A%pi(ri.ri, 5.0.9), f3 = A%qi(ri.ri. 5.0.9),
fa = N%p;i(4ri, i, 7.0,¥). |a, @) are weakly nonclassical states for every mode,¢, y)
are strongly nonclassical.

where||¥), , are the projections df¥’) on even/odd subspacést. The operatoK—1)" is
Hermitian and(—1)"¢ may be regarded as a sort of nonlinear multimode interaction.

In the classification scheme of [18] the (one-mode) states which possess the above
properties (b) and (c) fall into the subclass of theakly nonclassicastates. In this scheme
the nonclassical states are subdivided imakly nonclassicabnd strongly nonclassical
depending on the pointwise non-negativity or nonpositivity of the phase avefaged
Glauber—Sudarshan diagonal representaBiéf), I = |81, B = /1 exp(id),

2
P(I) = %/O P(re”) d?o r=+1=|8. (53)

If P(I) < 0 for some values of the state is strongly nonclassical (then aR@) < O
for some values ofg) and if P(I) > 0 but P(8) # O the state is said to be weakly
nonclassical [18]. The set of classical states (R€8) > 0) is not subdivided. Criteria for
phase-insensitive nonclassicality of single-mode states were also studied in [19].

The family of sp(N, R) BG CS |«; ¢), equation (23), consists of classical ¢at=
0, £ /2, ) and weakly nonclassical states (for# 0, £, ) for every mode since the
multimode photon distribution in these states is a product of one-mode Poisson distributions.
There are no strongly nonclassical states in this family. Note that at 0, +7/2, 7
the states|a; ¢) are the CS|a) or | — «), and atgy = =/4 they coincide with the
Yurke—Stoler states [14]. The states with Gaussian Wigner function are either classical
or strongly nonclassical [18] and strongly nonclassical states from the latter family all have
a positive MandelQ factor (super-Poissonian statistics) [40, 41 E (A% — (i4))/(n),
wherein = a'al.

Along these lines we note that in the family of weakly nonclassical statgg) there
are states which exhibit quadrature squeezing (graphiem figure 1). Conversely, there
exist strongly nonclassical states (for example, in the family, v), defined below) which
do not exhibit squeezing of the quadratures of either «? (nor is theQ factor negative).
Moreover, among the one-modie, ¢, ¥) there are states witp = 0 which are squeezed
or not squeezed, but their photon statistics are not Poissonian (see the graphics on figures 4
and 5). These examples show th@at= 0 is not a sufficient condition either for statistics
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to be Poissonian or for a state to be classical.

The quadrature squeezing and{@r< 0 are sufficient conditions for the nonclassicality
of the corresponding states [41]. However, they are neither sufficient nor necessary for the
strong nonclassicality as demonstrated below.

In [18] a simple sufficient condition for strong nonclassicality of the states (i.e. for
nonpositivity of the phase smeared diago®arepresentatior?(7)) is given in terms of
photon number distributiong,,,

L i=(n+ D py_1pns1 —np> <0 for somen > 0. (54)

The distributionp,, is expressed in terms ¢?(/) as [18]
Pn = / dI P(p, P (D) p T = 1M (55)
0 n:

Distributions p, which can be represented in the above form wikh> 0 (P # 0)
were recently defined as classical (nonclassical) [24]. Nonclassicalipy, ofieans strong
nonclassicality of the corresponding states.

Amongsp(N, R) BG CS there are strongly nonclassical states as well (the definition of
strong nonclassicality for multimode states is discussed below), such as, for example, the
cat states

la, ¢) = N(lo) + €% — a)) (56)
the normalization constant being
N = 21+ cospe )72 = N7, ¢).

In the case ofV = 1 the states (56) have been discussed, for example in [9, 24] and in the
fifth paper of [14]. The probability for totally: photons in|a, ¢) (irrespective of which
mode they belong toy; = n1 + --- +ny, is found as

pu(F, ) = N(F, ¢>)2e—f”n—|sn<¢) sa (@) = 2(1+ (—1)" cosep) F=la (57)
and the function,, (7, ¢) takes the form
L, ¢) = L(F, $) (50_1(D)sny1(d) — s2()) (58)

where the functior,,

~4n
nl(n — 1)!
is non-negative. The non-negative factQK¢) is seen to be a bounded and oscillating
function of both¢ andn, s,(¢) = s,.2(¢). Then for everyp # +x/2 the combination
Sn—1(@)snr1(¢) —s2(¢) is negative for alk for which (—1)" cos¢ > 0. Noting that the total
photon number distributiomp, (7, ¢), equation (57), coincides with that for the one-mode
states|a, ¢), |@| = 7, we conclude that all one-mode stales¢ # £r/2) are strongly
nonclassical (the strong nonclassicality of the one-mode statés$ was also proved in the
very recent E-print [24]).

One way of generalizing the notion of strong nonclassicality to multimode states is to
apply the above definition to the total photon number distribution, the other is to require
this for every mode. One can easily verify, that in tfienode state$x, ¢) the conditional
photon distributionsp,,, ..., (o, ¢) for the individual modei (ni; being fixed) also
obey the inequality (54). Thulgx, ¢ # £m/2) are strongly nonclassical according to both
criteria.

I, = NG, ¢)%e”
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Now consider thesquared amplitude quadrature squeez[id] in the multimode states.
We first note that the BG-type CS for any Lie algebra cannot exhibit squeezing of the
quadraturesX;; and Y;; of Weyl operatorsE;; since here the variances df;; and Y;;
are equal which stems from their eigenvalue property (15) [1]. In the quadratic boson
representationt;; = a;a; and X;; (or Y¥;;) squeezing is multimode squared amplitude
squeezing. The quadratubg; (Y;;) of a;a; is said to be squeezed in a state) if the
varianceAX;; (AY;;) is less than its value in the ground sta@. Thus quadratic field
squeezing does not occur jo; C_, C.). We shall see that macroscopic superpositions of
two such states do exhibit quadratic squeezing. However, let us first make some general
remarks about the SS of two and several observables.

Squeezing of the two quadraturés and Y of a non-Hermitian operatod (for
definiteness we writel = X + iY) can be achieved in two ways:

(a) in the eigenstatels, u, v) of complex combinatiomA + vA' (generalized 1S) [1];

(b) in the eigenstatels)® of A% (generalized cat states).

The first possibility was proved and demonstrated (in the exampleStofl, 1)
and SU(2) generators in the serieB* (k) and D(j)) in [1, 4]. These SS minimize
the Schodinger inequality and therefore were called Sdhnger (or generalized) IS. A
particular case of the SS of type (a) are the SS for general systems [25], introduced as states
minimizing the Heisenberg inequality, which is a particular case of that ofd8atger. The
second possibility (b) can be proved easily by calculations using the eigenvalue condition
of A? and taking into account the Sétinger relation. This can also be checked directly
on the example of the following two types of superposition states

|z; @) = cosp|z) +ising| — z) |z, ¢) = N(Iz) + €| — 2)) (59)

where|z) are eigenstates of, A| + z) = +z| £ z). These states can exhibit squeezing
according to the stronger criterion, given in [1] (see also beloyg).¢) and |z, ¢) are
eigenstates ofA? (and not ofA, unlessyp = n/2,n =0, 1,...). Eigenstategz)® of A?
which are not eigenstates dfare superpositions gtt z). Therefore the SS of type (b) are
cat states|z; ¢) and|z, ¢) in (59) are examples of such SS for asyfor which eigenstates
| £ z) do exist. In fact first- and higher order squeezingXfand Y can occur in states
which are eigenvectors of” for anyn > 1 and such eigenvectors can be easily expressed
as discrete superpositions of sevgtal

The operatorS(u, v) which transforms the nonsqueezéd to the SS of type (a),
|z, u, v), was defined in [1, 6] as a generalized squeeze operatdr £fa then S(u, v) is
the known canonical squeeze operator [41, 42]). Having established that eigenstates
of A? can universally exhibit squeezing of the quadratureiofve can define, in analogy
with the previous case, squeeze operator of the second kifig by means of the relation

12)® = Si112). (60)

We can point out an example of such a squeeze operator—that is the op®i@atoof
equation (51). It maps the multimode &) to the weakly nonclassical stateg (N, R)
BG CS)|a; ¢) which are eigenstates ofa; (thesp(N, R) BG CS) and do exhibit quadrature
squeezing (see the graphigs on figure 1).

The main difference between the above two types of SS is the following. SS of type (a)
can exhibit arbitrary strong squeezing ¥for Y, while the squeezing in SS of type (b) is
always bounded, since eigenstatesAéf~ (X +iY)? can never tend to an eigenstateXof
or Y. The family of states in which arbitrary strong squeezing (‘ideal squeezing¥) of
Y is possible could be called thdeal X-Y SS Thus the Sclirdinger IS, in particular the
canonical SS [41], are idegl-g SS. We follow the definition o-Y SS according to [1]:
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a statelW) is X-Y SSif AX < Agor AY < Ag, whereAg is the lowest level at which the
equality AX = AY can be maintained. The lowest level is reached on some eigenhgate

of A. For the quadratures af, k =1,2, ..., and(aiaj)" the lowest level is reached in the
ground statg0). Linear and/or quadratic squeezing in ideal one-mode squared amplitude SS
(eigenstatef; u, v) of ua®+va?®) is considered in papers (for different ranges of parameters
u,v) [17, 30, 31, 5, 43, 44]. The diagonalization mi* + va'* for k > 2 is discussed in

the very recent E-print [45].

A family of states in which the squeezing of quadratures of any product,

i,j =1,2,...,N, can occur should be called a family ofultimode squared amplitude
SS An example of such a multimode SS is given by the Robertson [6] IS, which should
be eigenstates of complex combinatiang;;a;a; + vk,;,-jaja; (summation over repeated
indices). These ar@eal multimode squared amplitude SS. Multimode quadratic SS of
type (b) are defined as eigenstates of all squared produety?. They take the form (29).

Next we consider cat-type squared amplitude SS. One example of two-mode cat-type
second-order SS is considered in [20], which, however, was examined for ordinary squeezing
only. Here we provide examples of multimode cat-type SS which can exhibit both quadratic
and linear squeezing and other interesting statistical properties. Such SS are the following
macroscopic superpositiongy, ¢, ) of the sp(N, R) algebraic CS|a, ¢) (|, ¢) are
defined in equation (56)):

o, ¢, ¥) = N, ¢) + €' — . ¢)) (61)
where is the normalization constant, which obeys (21) and has the form

NFE ¢, ¥) = iz(l + 28267 (Cosp COS(72 — ¢ + ) + COSF2 + ¢ — )2 (62)

7
N being given in equation (62) and= || = /|a1|2 + |a2|? + - - - + |an|?.

We demonstrate the quadrature squeezing on the example of individual mode operators
a; (linear squeezing) and? (quadratic squeezing). Note thiat, ¢, v) are not factorized
over the different modes. The variancAp; and Ag; of the quadratures of the mode
annihilation operator;, a; = (¢; + ip;)/v/2 are

N2pi(F,ri 6, 0. W) = 3 + (ala;) — Re(a?) — 2(Im (a;))?

A2qi(F,1i,6:, ¢, ¥) = 3 + (a]a;) + Re(a?) — 2(Re(a;))? (63)
wherer; = |o;|, 6; = arge; and
(ai) = =20 N2N 26 sing (L + i) (€7 + cosF2 — ¢ + ) + SiNGF2 — ¢ + ¥))

(ala;) = 4rPNPN?(1 — cospe?” — e (cose SiN(F2 — ¢ + ) + SiNFE + ¢ — ).
As functions off; the variances op; andg; oscillate with periodr and Ap; (6; + 7/2) =
Ag;(6;). Linear squeezing is exhibited in states, for exampleO0, v) with r; = 0.05,

7 close tor;,, 6; = n/4, ¢ = 0 and s around 3152 (see figure 1). Maximap;
(¢:) squeezing is obtained wheh = r; (i.e. when only one mode is excited). Here
A?p; > 0.275= A?p;(0.05,0.05, 7/4, 0, 3.131) = A?¢;(0.05, 0.05, 7 /4, 0, 3.153. When

7 is increasing the graphics afp; and Ag; (as functions of the angles and /) become
smoother and tend to a constant value, independent of the superposition paraneatdrs
¥. In the above stategy, O, ¥) the Mandel factorQ; for the modei is negative in the
vicinity of ¢ = only. By its definition the quantity? coincides with the intensity of the
field (the total mean number of phototis'a) = ZN (aj'ai)) in the multimode CSa). The

2

field intensity in the multimode superposition states ¢, ¥) reads
(a'a) = 4FP2N2N2(1 — cospe?” — e (Cosp SIN(F2 — ¢ + V) + SN2 + ¢ — ¥))). (65)

(64)
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We see thata'a) is an increasing function of, 7 = |a|.
The variances of the quadratur#s, Y; of the squared individual mode amplitudé,
al? = (X; +iY))//2,in|a, ¢, ) is easily obtained in the form

A2X(F, i, 0 b W) = 1+ 2(ala;) + (a)°a?) + r{ cog46;) — 2(Re(a?))?

2 i 2 . (66)
A%Y;(F,ri 6, ¢, %) = 14 2(ala;) + (a]°a?) — r sin(46;) — 2(Im (a?))?
where
(a?) = —4ie? N?N%e ™ (cosg Sin(F2 — ¢ + ¥) — SINGF2 + ¢ — V) 67)

(a/?a?) = 2r!N*(1 — 2N (cosg Cosli — ¢ + ) + COSF + ¢ — ).

As functions of the angl®; the variances ofX; and Y; oscillate with periodz/2 and
AX;(0; + 7 /8) = AYi(6).

The variancesAX; and AY; are squeezed if they are less than their value of 1 in
the ground state0). This holds, for example, in statée, 0, ¢) with 7 close/equal to
ri < 1,0, = nw/4, ¢ =0 andy around zero, the minimal value &2X; and A%Y; (at
7 = r; = 0.88) being equal to 0.69. In the stat#8e™7/4,0, ) linear and quadratic
squeezing can occur simultaneously (see graphicand g4 on figure 2: jointX;- and p;-

(Y;- andg;-) squeezing occurs in the intervalle< ¢ < 7.4). In the above intervaD; > 0,
where Q; is the Mandel factor for the individual mode

On figure 2 graphics are shown ofX; (7, r;, 7/4,0, ¥) as a function of the angle
for fixed r; = 0.8, and three different values of the total excitation paramgté= 0.8 = r;

(i.e. only modei excited, graphicg;), 7 = 1 (graphicsg,) and7 = 1.2 (graphicsgsz). One
sees, that graphics & X;(y) become rapidly smoother and tend to a constant value when
F is increasing.

An important statistical property of all statdev, ¢, ) is that they arestrongly
nonclassicalin the sense of the definition of [18] (discussed above), which we apply here
to the total photon number (and to the conditional individual mode number) distribution
in the multimode states. The total photon number distribup(F, ¢, v) takes the form

gkﬁ T T

VIx ~ variance of X or p\/§

6 g1() — 1
5

4

3

2}

L pmmm e oo S e

0 ;3 :L é 6.5 '.7 angie?ﬂ

Figure 2. Squared amplitude quadrature squeezing in superpositions $tates ) for
ri =08. AX; = AX;(F,ri, 0, ¢.%), X2 =X; or Y, 7 = |al. g1 = A%X;(ri,ri, 5,0,9) =
A%iGri i, —%.0,9), g2 = AZX;(Lry, 2,0,9), gz = A?X; (12,51, %.0,%), g4 =
2A2p;(ri, i, %, 0,9) = 2A%q; (r;, i, —Z, 0, %). JointX andp (or Y andg) squeezing occurs
in the interval &4 < ¢ < 7.4.
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Figure 3. Probabilities p, (7, ¢, ¥) to find n photons in the multimode superposition states
la, ¢, ¥) as functions off = |« for different values ofp andy. po = po(7, 5,7), p1 =
p1(F, 7, =%), p2 = p2(7, 0, m),p3 = p3(F, 7w, 5), pa = pa(F, 7., 7), ps = ps(F, w, —%).

Ipnl -
Pn2 4=
P o

o
g
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Figure 4. Oscillating photon number distributions, (7, ¢, ¥) in strongly nonclassical states
la, ¢, ¥) for different values off, ¢ andy. p,1 = p,(0.8,0,7.3) (0 > 0, Ap > 0.38,
AX > 0.73), pu2 = pa(22,7,—%) (Q < 0), p,3 = p,(0.55,5.0914 0) (Q = -0, Ap > 0.38,
AX > 1).

similar to that of equation (57),

Pu(F, @, W) = pu(F, @, Y)su(P, V)

- - ; 68
su(@. ¥) = |1+ (=1)"? +i"eV + (—i)"dV =42 (68)
where
- L
(7,0, 9) = N°(F, 6, YIN? G, )& —-.

The factors, (¢, ¥) is bounded from above and as a functionmowscillates with period
4. Therefore the inequality (54) is satisfied in all stai@se, ) for thosen for which s,
reaches its local maximum. This proves that|all ¢, ¥) are strongly nonclassical. Note
that the factors,, for conditional distribution of:; (nx; fixed) also satisfy the inequality
(54).
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Figure 5. Nonoscillating photon number distributions in strongly nonclassical stateg, )
for different values off = |al, ¢ andy. p,1 = p,(0.55,22460) (Q < 0, Ag > 0.5,
AX > 1), py2=p,(0552330) (Q <0,Aq > 043,AX > 1), p,3 = p,(0.55,2.2343840)
(Q = +0, Aq > 05, AX > 1), p,4 = Poisson distribution witfata) = 0.685 as inp,3.

As in the case ofla, ¢) here p,(7, ¢, ¥) again coincides with the probability to
find n photons in the one-mode statgs ¢, v), |&| = 7, @ = 7€’. The distributions
pu(7, ¢, ¥) do not depend od. It can be oscillating or nonoscillating and with positive,
negative or vanishing individual mod@ factor. No definite relations exist between the
sign of Q, the photon number oscillations and the amplitude quadrature squeezing: all
possible combinations of these three properties can be found in strongly nonclassical
states|a, ¢, ¥). In figures 4 and 5 representative graphics of oscillating (figure 4) and
nonoscillating (figure 5) photon distributions are shown. The sign of the corresponding
0 and the inequalities fong(9) and AX (9) for each of the graphics are also given. In
the recent E-print [24] examples of classical states with oscillating photon distributions
were pointed out. Thus photon number oscillations are neither necessary nor sufficient for
nonclassicality of quantum states.

The Q factor is boundedQ > —1, and whenQ = —1 then the variancé\n of n is
vanishing. This means [1] that the corresponding state is an eigefstabté 7 (a Fock
state) andp,(|n)) = 1. In figure 3 photon probabilitiep, (7, ¢, %), n = 0,1, 2,3, are
shown as functions of for several values o andy. At 7 — 0 one obtaing, = 1. For
N > 1 this yields thdfinite superpositions of multimode Fock state$, no+---+ny = n,
and for the one mode cas®, = 1,—the number state:) with n = 0,1,2 orn = 3. We
see from figure 3 that practically the states ¢, ¥) with the corresponding, v coincide
with Fock stategn), n = 1,2, 3, for |a| < 0.5 (thenp, > 0.99995). In the multimode
case forla| < 0.5 the specific form of superposition of severa) depends on the specific
values of|o;|, |az| + -+ + lan| < 0.5. If o4 = O then alln photons/bosons are in the
modei, i.e. the Fock state ign) = 10,...,n; = n,0,...,0). There is a growing interest
in obtaining Fock states from macroscopic superpositions of (so far mainly one mode) CS
la) (see [37] and references therein). Here we provided an example, probably the first one,
of obtaining Fock states of multimode systems.
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6. Concluding remarks

We have constructed and discussed some propertiap (@, R) and u(p, g) algebraic
(algebra related) CS in the quadratic boson representation. These states are a generalization
of thesu(1, 1) CS of BG [8] and are constructed as eigenstates of all mutually commuting
Weyl lowering operators. The quadratic boson realizationspgiv, R) and u(p, ¢) are
reducible. Therefore the corresponding group related CS [10] are not overcomplete in
the whole Hilbert space of stat@$. The BG-type CS are very large sets and afford the
possibility to resolve the unity operator i by means of some subsets. We pointed out such
subsets of thep (N, R) algebra related CS (and their superpositions as well) and wrote down
the relations between the establishgg, ¢) CS representations and the familigkmode
canonical CS representation, in particular betweensth@, 1) BG CS and the two-mode
canonical CS representations.

The new states can exhibit interesting statistical properties, such as amplitude quadrature
squeezing, sub- and super-Poissonian photon statistics and oscillations in photon number
distributions. All states from the overcomplete subfanly ¢) of thesp(N, R) BG type CS
are weakly nonclassical [18] and (some of them) can exhibit amplitude quadrature squeezing
as well. Strongly nonclassical [18p(N, R) algebra related CS were also pointed out.

Noting that the BG-type C$z) cannot exhibit squeezing of the quadratures of the
Weyl generatorsz;; we anticipated that such squeezing should occur in eigenstaté$,of
m > 2, which for Elzj = (a;a;)? are called multimode squared amplitude Scfinger
cat states. Squared amplitude squeezing in the individual modes is demonstrated in the
superpositionsa, ¢, ¥) of two sp(N, R) CS. These are strongly nonclassical states and at
small |a| (Ja| < 0.5) and for specific values of the anglgsy practically coincide with
superpositions of several multimode Fock stateéswith the total number of photons/bosons
n=12o0rn=3. If ¢y = 0 then alln photons are of the modg i.e. we have a single
multimode Fock state. The Fock state engineering via discrete superpositions of canonical
CS|a) is of current interest in the literature (one mode mainly). We have shown that discrete
superpositions of multimode canonical CS are naturally encompassed in the framework of
sp(n, R) BG-type CS and their linear combinations. The weakly nonclassig&¥, R) BG
CS|a; ¢) can be generated from G&) by means of the second kind of (unitary) squeeze
operator. This should be considered in greater detail elsewhere.
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Appendix

A.1. The correspondence rule between shenode canonical CS and(p, g) BG-type CS
representations

The multimode CS«) are overcomplete in th&/-mode boson system Hilbert spagg
spanned by the number stat@s = |nq, ..., ny). Inthe canonical CS representation a state
|W) is represented by the analytic functidiacs(c; W) of N variablese;, i =1,..., N,

Foeslon W) = (@[%) o) = ) Ty, (69)
1'...npN!
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Theu(p, q) BG-type CS| z; [, p, q), equation (41), are overcomplete in subspakes
satisfying the resolution unity equation (42). Hereafter if a stite € H; C H, then in
the u(p, g) CS representation this state is represented by the analytic functians-ol
variablesz;, k=1,..., N — 1,

Fi(p.q.z: V) =(q. p,[; 2"|¥). (70)

The relation between the two representativeslofimmediately follows from the expansion
(37) and equations (40) and (44):

o0
Foes(a, W) = > oy Fip,q, z: W) zx given by equation (40) (71)
|=—00
This formula is efficient for the transition frofiF;} to Fccsif one knows the representatives
F,(p,q, z; ¥). In the opposite direction the transition formula is easily obtained from (70),
(37) and the orthogonality betweéiy, and 7, ..,

!/ 1 /; — |
Fi(p.q.2; V) = n—Nfdzaan,p,l;z*nz(a);l, p. q)e”" Focs(o; W) (72)

wherez(a) is given according to (40) ankz; I, p, ¢) is the state (41).

The u(p, q) CS representation is not yet fully specified (this could be a subject for a
separate work), except for the casepot= 1 = g (N = 2 when it coincides with the well
knownsu(1, 1) BG CS representation [8]. In this case the relation (71) is rewritten in the
simpler form

o0
Fees(ai, a2, V) = Fi—o(z; V) + Z(Olll + ab) Fi(z; W) 7 = . (73)
=1
The BG representation is given [8] in terms of Bargman indexnot in terms ofl:
W) — Fgg(z, k; W). The relation betweehandk is = £/4k(k — 1) + 1, or

k=30+1) I =ny—ny. (74)

One hasFi<o(z; W) = Feel(z, k = (L+11))/2; W), Fi=o(z; ¥) = Fge(z, k = (1+1)/2; ¥)
and

Fees(a, ap; W) = Feg(z, k = %Q v) + Z(Olfk_l +ad Y Fea(z, k; W) 7 = a10.
i>1

(75)

The relation (74) stems from the definition &f by means of the Casimir operator:

Cy = K§ — %(K+K_ + K_K,) = k(k —1). In the two-modesu(1, 1) representation

(9) we haveC;, = —}1 + L?/4 which tell us that botti and—I lead to the same values of

C,, that is the representations realized in the subspacesdwitire equivalent. However,

for the transitions between canonical CS and BG representations the digs sifjnificant

and is taken into account in (73) by the identification of the standard, 1) notation

|n + k, k) of the eigenstates a3 once with the two-mode Fock stafe+ |/|, n) (the first

term in the sum in (75)) and second with » + |/|) (the second term in the sum in (75)).
Keeping in mind the latter identification rule we can express the two-mode canonical CS
la1, ap) in terms of BG CSYz; k),

joa, 00) = |z k= 3) + Y (@ T +aF Dk = (76)
k>1
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A.2. On the overcompleteness of eigenstates?of

Let {|z)} be an overcomplete family of eigenstates of Ainnon-Hermitian operaton;,
Ailz) = zilz),

1= /du (z, z9)|2)(z| (77)

where du(z, z*) = F(z1],...,|zy])dz. We note that the requirement of the weight
function F not to depends on the phaseszpf This, for example, holds for th&/-mode
canonical CSsp(N, R) andu(p, g) CS (23) and (41). Consider the sequence of families

1225 01, s @),

n n—1 .. n—1

1275 @1, .., n) = COSQ, 127 11, ..., @u1) HiSiNG, | — 27 51, @) (78)
where g, k = 1,...,n, are angle parameters, is any positive integer and?' is the
N-component columriz3 , ..., z%) of eigenvalues of powera? of operators4;,

A1 £ 2%501 o) =E2f £ 2701, ). (79)
|2%"; ¢1,..., @,) are superpositions of'tates|z) with z; on circles of radiugz;|. If all
¢ are integer multiple ofr/2 then one obtains the states z). Independent parameters
arez, ¢1, ..., ¢,, therefore one could also use the notatiene™) (as in section 3).
Theorem.If in equation (77) @u(z, 2*) = F(|z1], ..., |zy]) d°z then
1:/d,u(z,z*)lzzn;(pl,...,(pn)((pl,...,(pn;z2"| n=012.... (80)

Proof. The theorem is valid for = 0 by construction. It is not difficult to check directly,
that it is valid for severat > 0. Now suppose that it is valid fer— 1. Then we shall prove
that it is also valid forn. Indeed, using the definition (78) and noting thezt]?" = iz]?”’l
we obtain for the projectors in (80) the expression,

" " m—1 m—1
122501, o 01, e 00 22| = COF 0127 01, G (@1 On1s 22|

. m—1 m—1
+Si @, — 2% 01 ) (@1 Ot =22
. . m—1
+I COS¢I’£ Sln(pnlzz ’ (plv M} Wn—l)(‘ﬂla ) @n—l; —z
. . n—1 n—1
—icosg, sing,| — 2% 501, ., el @1, o 0n1; 25| (81)

We substitute this expression into equation (77) and then in the second and in the last
integral change the integration variablesto z; expiz/2"~!] (rotation on angler/2"-1).
Then we note that under such rotation the eigenvaiﬁ'éé of A2 change the sign, i.e.

on—1
|

1227 01 . 1) > | — 22 o1, ..., ga_1). This yields the cancellation of the last two
integrals and the coincidence of the first two ones in view of the rotational invariance of
the resolution unity measureudz, z*) = F(|z1l, ..., |zy|)d?z. We obtain

/du (2, 29127 01, o 0 @1, - s 27

= / A (z, 29|22 01 o u ) (P11 22 =1 (82)
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A.3. On the uniqueness of the resolution unity meastpgs, I, p, g) for u(p, q) CS

The resolution unity measure for a given continuous family of states is generally not unique.
It could be unique if a certain constraint is imposed on the class of admissible measures.
For example, the requirement ofvariance of the measure on the group manifold under
the group action determines it uniquely [11]. As a result the resolution unity measure for
the group related CS is unique if it is invariant under the group action. For canonical SS
families of noninvariant resolution unity measures have been constructed in [46]. Canonical
SS minimize the Sclkadinger uncertainty relation and can be regarded as group related CS
for the semidirect product o8U (1, 1) and the Heisenberg—\Weyl group [46].

In this section we establish that the resolution unity measure fou¢peq) CS (41)

is uniquely determined by the requirement of the weight funciitp,, ..., zy_1) to be a
smooth function ofiz;| and independent of arg i = 1,2,..., N — 1; such is our weight
function in equation (42).

Suppose that there exists another functidfizi|, .. ., |zv-1l; {, p, g¢) such that the new

measure d’ = F'd’z resolves the unity 1as in equation (42). Then we should have

0= /dZZ[F(IipI, 124151, pog) — F'(lzal, ..., lzv=1ls L po @lllz5 L, poog) g, p, 1 2]
(83)

Substituting the expansion (41) dfz;/, p,q) and integrating with respect to angles
@¢; = argz; we obtain that the difference function

q>(r17r2""7rN71) = F(Fp3;q;ls pvq)_F/(|Z1|7'~-3|ZN71|;lvpsq)

= _ 2 [ 2 = _ 3 2 2
where7, = |z,| = rl—i—ou—i—rg and7, = |z,] = \/rp+1+~-~+rN_1, should be

orthogonal to the monomials

21141 2ny g+l .
r11+...rNﬁ’11+ ri = |zl i=1...,N—-1 n=12,....

Changing the integration variables and redenotiffgagain asr; one can write this
orthogonality in the form

o0
/ dry...dryo1®@(ry, .o iyt .y s =0 (84)
0
wheren; = 1,2,...,i = 1,..., N — 1. Equation (84) implies tha®(r1,...,ry_1) iS

decreasing exponentially as the total radidst - - - + rs_; tends toco. This means that
the integral [~ ®2dry...dry_; is finite. It also follows from equation (84) thab is
orthogonal to any functiory (r; ...ry—1) which admits power expansion in terms of
i=12...N-1,

/ d}"l e drN,1¢(F1, e, VN,]_)f(r]_ . VN,]_) =0. (85)
0

This implies that® = F — F’ = 0 almost everywhere. Indeed, & # O it must be
nonpositive definite (in order to obey (84)) anddifis well behaved (it is sufficient to be
continuous) we could fing" which is negative in the domains whete< 0. However, then
we could not maintain (85), unleds = F’ almost everywhere. We suppose in (85) that
the integral of the power series gfis a sum of terms of the type of (84). This is ensured
if ® is a smooth function (i.e. all derivatives finite) of, ..., ry_1 (our F, equation (43),
is such a function). In this case we can take in (85¢ ®. Then we obtain thaf’ and F’
should coincide pointwise. Thus the resolution unity measure (43) is unique within the set
of smooth functions ofz4|, ..., |zy—1|.



Barut—Girardello coherent states far(p, ¢) andsp(N, R) 5695

A.4. Proof of the representation (46) of the Bessel funckgry)

In the case oy = 1 (p = N — 1) and—I > 0 our measure functio’, equation (43),
depends om, ..., r, through|z| = [|z1]> + - -- + |z,|]]Y? = 7, and it is a smooth and
positive function ofr, ..., r,. The measure function of [7F' ~ 7, """k _,_,,1(27,) is
also smooth and positive [26]. Therefore the differedcef these two functions is smooth
and in view of (84) and the result of the preceding section they have to coincide pointwise.
This proves formula (46) for Im=0,Rez > 0andv=—-Il—-p+1=0,41,....

Let us consider the right-hand side of (46) as a definition of a new fundii@nv),
z complex, v real. The integral is convergent for Re> 0 and the functionF(z; v)
is evidently analytic with respect tg and v. The Bessel functionk,(z) is analytic
and regular everywhere except of the negative half of the real lineplain [26]. We
proved in the above that the two analytic functiofi&; v) and K,(2z) (v = 0, +1,...)
coincide on the positive part of the real line ¢f Then they coincide in the whole
domain of analyticity inz-plain. Numerical computations show that formula (46) holds
for complexv as well. In conclusion let us note that the integral in the right-hand side
of equation (43) correctly defines (under replacemeafs — z1, |2,| — z2) analytic
functions F(z1, z2; [, p, q) of the two variableg; andzz, Rezi» > 0. Atz =0, =1
we haveF(z1,0;1, p, 1) = 27 P|z1|* P K1y, (221).
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